
Agora: Unified Framework for Crowd Simulation
Research

by
Michelangelo Diamanti

Dissertation submitted to the Department of Computer Science
at Reykjavík University in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

June 13, 2023

Thesis Committee:

Supervisor: Hannes Högni Vilhjálmsson, Professor, Reykjavík
University (RU), Iceland

Examining Board: Yngvi Björnsson, Professor, Reykjavík University
(RU), Iceland

Christopher Peters, Associate Professor, Kungliga
Tekniska Högskolan (KTH), Sweden

External Examiners: Nuria Pelechano, Associate Professor, Universitat
Politecnica de Catalunya (UPC), Spain

© Michelangelo Diamanti
June 13, 2023

Publishing Information
ISBN Print version: 978-9935-539-22-9
ISBN Electronic version: 978-9935-539-23-6

Author’s ORCID: 0009-0004-0175-1989

Agora: Unified Framework for Crowd Simulation Research

Michelangelo Diamanti

June 13, 2023

Abstract

Crowd simulation focuses on modeling the movements and behaviors of large
groups of people. This area of study has become increasingly important because
of its several applications in various fields such as urban planning, safety, and
entertainment. In each of these domains, the presence of virtual agents exhibiting
realistic behavior greatly enhances the quality of the simulations. However, the
inherently multifaceted and intricate nature of human behavior presents a unique
challenge, necessitating the effective combination of multiple behavior models. This
thesis introduces a novel theoretical framework for modeling human behavior in
crowd simulations, addressing the unresolved issue of combining a plethora of
behavior models, often developed in isolation. The proposed framework decomposes
human behavior into fundamental driving stimuli, which are then represented
graphically through the heatmap paradigm. Subsequently, the agent behavior is
influenced by the heatmaps, which guide them toward attractive areas and steer
them away from repulsive locations based on the encoded stimuli. A key advantage
of this approach lies in the ability to combine heatmaps using well-defined color
operations, effectively integrating different aspects of human behavior. Furthermore,
the heatmap paradigm facilitates objective comparison of simulation output with
real-world data, employing image similarity metrics to evaluate model accuracy.
To realize this framework, the thesis presents a modular software architecture
designed to support various tasks involved in crowd simulation, emphasizing the
separation of concerns for each task. This architecture comprises a collection of
abstract modules, which are subsequently implemented using appropriate software
components to realize the underlying features, resulting in the Agora framework. To
assess the ability of Agora to support the various tasks involved in crowd simulation,
two case studies are implemented and analyzed. The first case study simulates
tourists visiting Þingvellir national park in Iceland, examining how their behavior
is influenced by the visibility of the surrounding environment. The second case
study employs Agora to model the thermal and density comfort levels of virtual
pedestrians in an urban setting. The results demonstrate that Agora successfully
supports the development, combination, and evaluation of crowd simulation models
against real-world data. The authoring process, assisted by Agora, is significantly
more streamlined compared to its native counterpart. The integration of multiple
models is achieved by combining the heatmaps, resulting in plausible behavior,
and the model assessment is made convenient through the evaluator within the
framework. The thesis concludes by discussing the implications of these findings for
the field of crowd simulation, highlighting the contributions and potential future
directions of the Agora framework.

iv

Agora: Samræmd rannsóknarumgjörð fyrir
mannfjöldahermun

Michelangelo Diamanti

June 13, 2023

Útdráttur

Mannfjöldahermun fæst við gerð líkana af hreyfingu og hegðun stórra hópa af
fólki. Mikilvægi þessa rannsóknasviðs hefur vaxið stöðugt vegna hagnýtingar á
margvíslegum vetvangi, eins og til dæmis á vetvangi borgarskipulags, öryggis og
afþreyingar. Þegar sýndarmenni hegða sér á sannfærandi hátt, leiðir það til betri
hermunar fyrir þessi notkunarsvið. En mannleg hegðun er í eðli sínu margbrotin
og flókin og því er það sérstök áskorun við smíði sýndarmenna að sameina, með
áhrifaríkum hætti, mörg mismunandi hegðunarlíkön. Þessi ritgerð kynnir nýja
fræðilega umgjörð líkanasmíði mannlegrar hegðunar fyrir mannfjöldahermun, sem
tekur á þeim óleysta vanda að sameina fjölda hegðunarlíkana, sem oft eru þróuð með
aðskildum hætti. Umgjörðin brýtur mannlega hegðun niður í grundvallar drifáreiti,
sem eru sett fram grafískt útfrá hugmyndafræði hitakorta. Sýndarmennin hegða sér
síðan undir áhrifum frá hitakortunum, sem vísa þeim í áttina að aðlaðandi svæðum
og stýra þeim burt frá fráhrindandi svæðum, útfrá hinu umritaða áreiti. Lykilkostur
þessarar nálgunar er sá eiginleiki að geta blandað saman hitakortum með vel skil-
greindum litaaðgerðum, sem eru þá í raun samþætting mismunandi hliða mannlegrar
hegðunar. Hitakortshugmyndafræðin auðveldar ennfremur hlutlægan samanburð
hermunarúttaks og raungagna með notkun myndsamanburðarmælinga, til að meta
nákvæmni líkana. Varðandi útfærslu, þá kynnir þessi ritgerð einingadrifna hug-
búnaðarhögun sem er hönnuð til að styðja við ýmsa ferla mannfjöldahermunar,
með áherslu á aðskilnað helstu viðfangsefna hvers ferlis. Þessi högun inniheldur
safn huglægra eininga, sem síðan eru útfærðar með viðeigandi hugbúnaðarhlutum,
sem raungera undirliggjandi eiginleika. Útkoman er sjálf Agora umbjörðin. Tvö
sýnidæmi eru útfærð og greind til að meta getu Agoru til að styðja við ýmis man-
nfjöldahermunarverkefni. Fyrra dæmið hermir eftir ferðamönnum sem heimsækja
Þingvallaþjóðgarð, og skoðar hvernig hegðun þeirra verður fyrir áhrifum sýnileika
umhverfisins sem umleikur þá. Seinna dæmið nýtir Agoru til að smíða líkan af
hitauppstreymis- og þéttleikaþægindum hjá sýndarvegfarendum í borgarumhverfi.
Niðurstöðurnar sýna góðan árangur Agoru við að styðja þróun, samþættingu og
mat mannfjöldahermunarlíkana gagnvart raungögnum. Þróunarferlið er verulega
þjálla með Agoru en með hefðbundnum aðferðum. Samþætting margra líkana tókst
með blöndun hitakorta, möguleg hegðun var framkölluð og mat á líkönunum varð
þægilegra með umgjörðinni. Ritgerðinni lýkur með því að fjalla um áhrif þessara
niðurstaðna á svið mannfjöldahegðunar, með áherslu á nýstálegt framlag þessarar
rannsóknar og mögulega framtíðarþróun Agora umgjarðarinnar.

v

Dedicated to my family,
my very own giants upon whose shoulders I stand to reach this milestone.

vi

Acknowledgments

This Ph.D. journey, marked by discovery, learning, and a fair share of challenges and
triumphs, wouldn’t have been achievable without the constant support and wisdom
of several individuals. I want to take this opportunity to express my gratitude to
everyone who contributed to this process in myriad ways, big and small.

My deepest gratitude goes to my supervisor, Hannes Högni Vilhjálmsson, whose
kind, optimistic, and resilient character proved instrumental. His contagious passion
for science, research, and teaching motivates everyone around him, myself included,
to reach for higher standards. He was a guiding force, providing positivity and
demonstrating a unique ability to ingeniously turn difficulties into opportunities.
His unwavering support has been invaluable and sets the bar for the researcher and
person I aspire to become.

I extend my appreciation to my committee members, Yngvi Björnsson and Christo-
pher Peters, who have offered invaluable insights and support from the very beginning
of this endeavor. I am equally grateful to Nuria Pelechano, whose rigorous evalua-
tion in the role of examiner enhanced the quality and depth of this research. The
collective guidance of the committee has been crucial in the successful completion
of my dissertation.

Many thanks to Claudio Pedica who provided invaluable hands-on supervision at
the beginning of this journey. I am also grateful for the notable contributions
made by Hallgrímur Andrésson, Sofia Basílio, Hrafnkell Þrastarson, and Jóhann
Indriðason as interns during their summer projects. Finally, my gratitude goes out
to all past and present members of the Center for Analysis and Design of Intelligent
Agents, whose stimulating discussions have been a source of inspiration. Special
recognition to Reykjavík University for its fantastic facilities and exceptional staff.

This work was made possible thanks to the funding provided by the Icelandic
Research Fund. I am particularly thankful to them for their financial support
through grant #174444-051, which supported the “Character Territoriality” project,
and grant #217663-052, for “The Agora Framework” project.

During this journey, I’ve had the privilege of meeting countless amazing people
who have contributed to making Iceland feel like a home away from home. Each of
them has played a part in shaping this experience, and for this, I offer my sincere

vii

thanks. This journey, like many others, had its fair share of hellos and goodbyes,
but the impact of those shared experiences remains. I am profoundly grateful to
Alessia, whose serendipitous entry into my life acted as a key for deciphering the
complex pages of this story. Thanks to Giulio, Marco, and Judith, whose presence
and friendship remained constant throughout this adventure. A big thanks to the
first “Italian Gang”, especially Federica and Dario, who formed in the spring and
broke the metaphorical ice, setting the tone for my Icelandic stay. I can’t forget
my energetic and daring Skipholt flatmates, Ben, Frederick, and Henrik, whose
spirit was a constant source of motivation. Equally appreciated are Valentina and
Carlo, who always found their way back to Iceland. Finally, my heartfelt gratitude
goes to the wonderful friends I’ve made during the last leg of this journey, who
accompanied me during the final stretch of this rollercoaster: Riccardo, Camilla,
Lena, Gabriele, Chiara, Lorena, Federica P., and Federica K.

While remarkable people in Iceland made it feel like a second home, my friends
back in Italy brought the Icelandic spirit of independence and adventure into my
original home, bridging the distance between the two. Despite the time apart, each
reunion feels as if I’ve never left. For their enduring friendship, my deepest thanks
go to: Gianmarco, Lorenzo, Alex, Aldo, Alessio, Cristina, Simone, Paolo, Chiara,
Francesco, Davide, Nicole, Nicolò, Michela, Dennis, and Martina. I extend my
appreciation to my university friends: Aurora, Brahim, Davide, Luca, and Christian.
Despite being dispersed across various locations and life trajectories, they have
remained in contact and been a constant source of support.

I owe a profound debt of gratitude to my family, my safe harbor in every storm. My
deepest love and appreciation extend to my mother, Giovanna, and my grandmother,
Domenica (Memma), whose selfless affection and unending support have driven
me to pursue my goals, despite the distances they created. My brother, Jacopo,
deserves special recognition for being a guiding light and forging a path for me
to follow. Heartfelt thanks to Silvia, Marina, Ettore, and Maddalena for their
unwavering support and infectious cheerfulness. I’m equally grateful to Paola,
Sante, and Mirko, who have been my second family, offering deep care and support.
My appreciation also extends to the international side of my family: Antonio, Ellen,
Martino, Clara, and Sonia, who continually remind me that the world is vast and
full of wonders worth exploring. I also want to express my deep gratitude to Anna,
Riccardo, Michela, and Mirco, whose relationships stand as a testament to the
strength and significance of familial bonds. Lastly, my thanks go to Bianca, Primo,
their delightful family, and Sandro, for their constant care and kindness.

While my appreciation for those who helped me along the way knows no limits, alas,
the space here does. So, goodbye and thanks for all the fish.

-Michelangelo

viii

List of Tables

2.1 Social Space Structure . 9
2.2 Body in Social Space . 11
2.3 Behaviors in Social Spaces . 14
2.4 Some fields of application for crowd simulation. 16
2.5 Techniques to achieve variety in a crowd. 19
2.6 Practical tools to achieve variety in a crowd. 21
2.7 Social Behaviors Computational Models 26
2.8 Global pathfinding techniques. 28
2.9 Local navigation techniques. 30
2.10 Parameter calibration techniques. 33
2.11 Simulation Evaluation Techniques 36
2.12 Crowd simulation frameworks. 39
2.13 Crowd Simulation Frameworks Assessment 44
2.14 Crowd simulation Authoring Tools. 45

3.1 Operators for Heatmaps. 65

4.1 Requirements and Objectives . 71
4.2 Framework Components . 80
4.3 Specific Components and Software Architecture 90

6.1 Þingvellir Heatmap Comparison . 128
6.2 Comfort Model Parameters . 139

7.1 Agora Features and Limitations . 167
7.2 Literature Behavioral Model Supported by Agora 168

ix

x

List of Figures

1.1 Real World vs. Crowd Simulation . 2

2.1 Proxemics Example . 8
2.2 F-formation Example . 10
2.3 Crowd Variety Elements . 18
2.4 UMA Character Example . 23
2.5 Human Territoriality . 25
2.6 Navigation Mesh . 29
2.7 Parameter Calibration . 34
2.8 Evaluation Entropy Metric Example 37
2.9 Overview of Menge’s Components 40
2.10 Example of Behavioral Map Painting 46

3.1 Human Behavior Navigation . 52
3.2 Heatmap-shaded Matrix Example . 53
3.3 Heatmap Weight Painting of a Character 53
3.4 Spatial Heatmap Example . 54
3.5 Heatmap Layers Example . 55
3.6 Absolute vs. Relative Heatmap Example 57
3.7 Heatmaps with Varying Resolutions 58
3.8 Heatmap Layers Combination Example 59
3.9 Different Size Heatmaps Combination Example 60
3.10 Heatmap Goal Selection Example . 62
3.11 Heatmap Path Planning Example . 63
3.12 Heatmap Local steering Example . 64

4.1 Agora Generic Component Diagram 74
4.2 Agora Specific Component Diagram 81
4.3 Generic vs. Specific Hierarchy . 83

5.1 Example of UMA Customized Crowd 96
5.2 Animation Blend Tree for UMAs . 98
5.3 Menge Unity Scene Editor . 99
5.4 Menge BFSM Graph Representation 100
5.5 xNode Behavior Authoring Tool . 102
5.6 xNode Heatmap Nodes . 104

xi

5.7 Unity Heatmap Goal Selector . 108
5.8 xNode Evaluator GUI . 117

6.1 Þingvellir Unity Native Simulation 121
6.2 Þingvellir Field Study . 123
6.3 Þingvellir Device Recorded Data . 124
6.4 Þingvellir Agora Simulation . 125
6.5 Þingvellir Agora BFSM . 126
6.6 Second Case Study Maps and Tiles 131
6.7 Second Case Study City Example . 132
6.8 Second Case Study Thermal Framework 133
6.9 Urban Environment Heatmap Grid 137
6.10 Thermal Conductivity Heatmap . 140
6.11 Thermal Generation Heatmap . 141
6.12 Air Temperature Heatmap . 143
6.13 Thermal Comfort Heatmap . 144
6.14 Density Comfort Heatmap . 145
6.15 Second Case Study Simulation . 146
6.16 Second Case Study BFSM . 147
6.17 Second Case Study Additional Behavior 148

8.1 Heatmap Clustered Selection . 177
8.2 Instantaneous Velocity to Trajectory 178

xii

Contents

Abstract . iv
List of Tables . viii
List of Figures . xii

1 Introduction 1
1.1 A Crowd Simulation Utopia . 1
1.2 The Status Quo . 2

1.2.1 Problem Statement . 3
1.3 A Hopeful Protopia . 4

1.3.1 Proposed Solution . 4
1.4 Contributions and Thesis Structure 5

1.4.1 Contributions . 5
1.4.2 Thesis Structure . 5

2 Background 7
2.1 Human Behavior . 8

2.1.1 Social Space . 9
2.2 Computer Simulation . 15

2.2.1 Crowd Simulation Applications 16
2.2.2 Variety in Crowds . 18
2.2.3 Computational Behavior Models 25
2.2.4 Navigation Algorithms . 27
2.2.5 Calibrating Model Parameters 32
2.2.6 Evaluating Simulation Output 35

2.3 Attempts to Unify . 38
2.3.1 Crowd Simulation Frameworks 39

2.4 Attempts to Simplify . 45
2.5 Discussion . 48

3 Theoretical Framework 51
3.1 What Influences Human Navigation 51
3.2 Modeling Behaviors with Heatmaps 52
3.3 Advantages of Modeling with Heatmaps 54

3.3.1 Spreading Data Across Several Heatmaps 55
3.3.2 Absolute and Relative Heatmaps 56
3.3.3 Heatmaps with Varying Resolutions 57

xiii

3.3.4 Blending Heatmaps for Combining Models 58
3.3.5 Combining Heatmaps with Different Sizes 59
3.3.6 Dynamic Heatmaps . 61
3.3.7 Heatmaps Performance . 61

3.4 Heatmap Behavior Modeling . 61
3.4.1 High Level Behavior Modeling 61
3.4.2 Global Path Planning Adjustments 62
3.4.3 Local Steering . 64

3.5 Operators Formalization . 65
3.6 Heatmap Calibration and Evaluation 67
3.7 Discussion . 68

4 Agora Architecture 69
4.1 Requirements and Objectives . 70

4.1.1 Usability . 71
4.1.2 Modularity . 72
4.1.3 Scalability . 72
4.1.4 Versatility . 73

4.2 Components Overview . 75
4.2.1 User Interface . 75
4.2.2 Data Handler . 76
4.2.3 Crowd Generator . 76
4.2.4 Crowd Simulator . 77
4.2.5 Visualizer . 78
4.2.6 Evaluator . 78
4.2.7 Plugin System . 79
4.2.8 Summary and Discussion . 80

4.3 Agora Software Architecture . 80
4.3.1 Unity-based User Interface 82
4.3.2 Data Manager . 84
4.3.3 Unity Multipurpose Avatar Engine 85
4.3.4 Menge Simulator . 86
4.3.5 Unity-based Visualizer . 86
4.3.6 OpenCV Evaluator . 87
4.3.7 Plugin Manager . 88
4.3.8 Summary and Discussion . 89

5 Agora Implementation 91
5.1 Menge-Unity Integration . 91

5.1.1 Menge so Far . 91
5.1.2 Native Plugins in Unity . 93
5.1.3 Menge C-API Extension . 94

5.2 Unity Multipurpose Avatar . 95
5.2.1 Creating a Fitting Population 95
5.2.2 Animating the Agents . 97
5.2.3 Instantiating the Agents . 97

xiv

5.3 Scene Authoring . 97
5.4 Behavior Authoring . 99

5.4.1 xNode Behavior Authoring Tool 100
5.4.2 xNode Heatmap Nodes . 103

5.5 Menge Heatmap Plugin . 105
5.5.1 Heatmap Implementation . 105
5.5.2 Heatmap Goal Selector . 105
5.5.3 Heatmap Velocity Modifier 109
5.5.4 Heatmap Transition . 111

5.6 OpenCV Evaluator . 112
5.6.1 Positional Data to Heatmap 112
5.6.2 Heatmaps Comparison . 113
5.6.3 Evaluator GUI . 115

6 Case Studies 119
6.1 First Case Study: Þingvellir . 119

6.1.1 Unity Native Simulation . 120
6.1.2 Field Study . 122
6.1.3 Agora Simulation . 124
6.1.4 Output Evaluation . 127
6.1.5 Summary of Results and Discussion 128

6.2 Second Case Study: Urban Environment 130
6.2.1 Urban Environment . 130
6.2.2 Behavior Theories . 132
6.2.3 Native Implementation . 132
6.2.4 Agora Implementation . 137
6.2.5 Summary of Results and Discussion 149

7 Discussion 151
7.1 Main Results Summary . 151
7.2 Answers to Research Questions . 152
7.3 Advantages and Limitations . 157

7.3.1 Advantages . 157
7.3.2 Limitations . 162

7.4 Agora Supporting Literature . 165

8 Future Work 173
8.1 Roadmap for Principles Assessment 173
8.2 Adding Social Behaviors . 175
8.3 Perceptual Studies . 175
8.4 Extensions to the Theoretical Framework 175
8.5 Extensions to the Implementation 176
8.6 Improving Menge Integration . 179

xv

9 Conclusion 183
9.1 Supported Claims . 183
9.2 Contributions . 183
9.3 Limitations and Challenges . 184
9.4 A Step Towards the Protopia . 185

Bibliography 187

xvi

Chapter 1

Introduction

1.1 A Crowd Simulation Utopia
One of the remarkable capabilities of computer science is the ability to study and
replicate reality through the use of simulations. In the realm of crowd simulation,
the ultimate goal is to create realistic models that replicate the diverse and intricate
behaviors of individuals as they interact with one another and their surroundings
(see Figure 1.1).

Imagine a perfect world of crowd simulation, where a comprehensive library
of human behavior components is made available to simulation designers. These
designers would be tasked with creating a realistic model of a busy city center,
filled with diverse individuals going about their daily routines. Each person in this
virtual world would exhibit behaviors and characteristics that accurately reflect
their real-world counterparts.

In this ideal scenario, simulation designers could effortlessly select and combine
different aspects of human behavior from the extensive library. These behavioral
components would be incorporated into the simulation, enabling the virtual agents to
interact with one another and with the environment in a manner that closely mirrors
reality. Each agent would be driven by internal motives, seamlessly integrating their
needs, reasoning, and factors that attract or repulse them into their decision-making
process. As a result, from the way they address their individual goals to how they
avoid obstacles and navigate through bustling crowds, every aspect of their behavior
would be customizable and cohesively integrated into the simulation.

The components would work together harmoniously, allowing designers to swap
or modify individual elements without disrupting the overall simulation. They could
experiment with different combinations of behaviors to study various scenarios, such
as introducing a large group of tourists navigating an unfamiliar city or observing
how virtual agents respond to unexpected events like an emergency.

In this perfect world of crowd simulation, the modular approach would allow for
the creation of diverse and intricate simulations that could be easily customized and
adapted to study a wide range of situations. The ability to combine various behaviors
would result in a holistic model that closely resembles real human behavior, providing

1

2 CHAPTER 1. INTRODUCTION

researchers and practitioners with powerful insights into how people interact in
complex environments.

This vision of an ideal world of crowd simulation highlights the potential impact
that advanced and flexible simulation tools could have on the understanding of
human behavior in various contexts. By striving towards this ideal, innovative
approaches and frameworks could be developed that enable more accurate and
comprehensive simulations of human interactions in crowded environments.

Figure 1.1: Left: People crossing the street in the real world; Middle: crowd
simulation; Right: the resulting virtual environment/agents. People are guided by
their internal reasoning and abide by specific rules. Agents do the same.

1.2 The Status Quo
Although the vision of an ideal crowd simulation world where people can effortlessly
pick and choose behaviors and seamlessly integrate them into simulations is enticing,
the current state of the field presents a different picture. The driving force behind
the advancements in crowd simulation has been the study of human social behavior
in the real world. In an attempt to replicate the complexities of human behavior,

1.2. THE STATUS QUO 3

the field has adopted a “divide and conquer” strategy by breaking down the problem
into more manageable sub-problems. These sub-problems address specific aspects
of human social behavior and translate them into computational models.

These models are built on precise techniques for guiding agents through en-
vironments while avoiding collisions, often involving numerous parameters that
need calibration. The output of these models is then evaluated using well-defined
metrics. In crowd simulation, all of these elements come together in interactive
3D virtual environments where animated agents move and behave like real people.
Each model excels in its niche, showcasing remarkable techniques for simulating
human behavior.

However, the field has not yet reached the ideal world of crowd simulation. One
of the main reasons is that despite the existence of frameworks aiming to unite
and standardize the field, many advancements remain confined to their sub-field.
Additionally, each behavior model is closely tied to its underlying components and
technologies, such as global pathfinding and local obstacle avoidance techniques,
making it difficult to fairly compare different models addressing the same phe-
nomenon. Furthermore, combining multiple behaviors into a unified model poses a
significant challenge. There is currently no meaningful way to do so, and even if
such a method existed, accommodating all possible combinations of components
would be an arduous task.

1.2.1 Problem Statement
The problem this research seeks to address is the fragmentation and limited interop-
erability of existing crowd simulation models. Despite considerable advancements in
the field, there is a lack of a unified approach that enables the seamless integration
and combination of multiple behavior models. This fragmentation hinders the
ability to create more accurate and realistic simulations of human behaviors and
interactions, as well as complicating the fair comparison and evaluation of different
models. The problem is further exacerbated by the closely tied nature of behavior
models to their underlying components and technologies. The challenge, therefore,
lies in developing a framework that can effectively combine diverse crowd simula-
tion models, facilitate meaningful comparisons, and support the creation of more
comprehensive and accurate simulations of human behavior in various scenarios
and environments.

In light of the aforementioned problem, this research seeks to address the
following research questions:

R.Q. I: What are the potential theoretical and technical challenges and lim-
itations involved when attempting to integrate fragmented behavior
models in crowd simulations?

R.Q. II: What paradigm can be employed to enable the seamless integration
and combination of multiple behavior models in crowd simulations?

R.Q. III: Given a suitable paradigm for integrating multiple behaviors, what
are the critical components and architectural principles that should be

4 CHAPTER 1. INTRODUCTION

considered when designing and implementing a system that leverages
this paradigm?

R.Q. IV: How can the integration of multiple behavior models contribute to
improved realism and accuracy in representing human behaviors and
interactions in crowd simulations?

R.Q. V: How can objective evaluation methods be devised to assess the realism
of various crowd simulation models, while maintaining a balance be-
tween evaluating individual behaviors at a local level and their wider
interactions in diverse scenarios and environments?

This dissertation offers a new approach to tackle these challenges by introducing a
framework that seeks to mitigate the existing limitations, promoting the development
of more comprehensive and accurate crowd simulations.

1.3 A Hopeful Protopia
The journey toward an ideal world of crowd simulation is not an overnight transfor-
mation. Instead, the process will be characterized by incremental advancements,
each contributing a piece to the puzzle and gradually enhancing the state of the
field. This incremental progress leads us towards what is known as “protopia”1 for
crowd simulation.

1.3.1 Proposed Solution
This thesis proposes a crowd simulation framework that leverages heatmaps for
modeling agent behaviors. A heatmap is a graphical representation of spatial
data that uses color intensity to indicate the magnitude of a variable, enabling
the visualization and analysis of complex patterns, relationships, or behaviors
within an environment. The key idea behind the proposed approach is that certain
components of human social behavior can be expressed through graphical spatial
representations, of which heatmaps are an example. By encoding various aspects
of human behavior like visibility, mental or emotional states, and other factors
into heatmaps, it becomes possible to combine different models of human behavior,
using a relatively simple set of mathematical blending operations, resulting in a
more holistic simulation model.

The proposed framework, referred to as Agora, supports classic crowd simulation
techniques, including those addressing high-level goal selection, global path planning
adjustments, and local steering, as well as output evaluation. The software architec-
ture of Agora addresses key requirements such as usability, modularity, scalability,
and versatility, making it a powerful tool for researchers and practitioners alike.

By implementing the Agora framework, the goal is to make significant strides
toward a more integrated, efficient, and realistic representation of human behavior
in crowd simulations. As progress continues on this path, each incremental upgrade

1a neologism for a realistic, achievable, and better future. https://kk.org/thetechnium/protopia/

1.4. CONTRIBUTIONS AND THESIS STRUCTURE 5

brings the field closer to the envisioned protopia, where the complexities of crowd
simulation are better understood, managed, and harnessed for the benefit of various
applications and domains.

1.4 Contributions and Thesis Structure
This section serves a dual purpose. Firstly, it underscores the significant contribu-
tions of this thesis to the field of crowd simulation, including the development and
application of the Agora framework, and related academic publications. Secondly,
it presents the thesis structure, providing a roadmap of each chapter to guide the
reader through the progression of this research.

1.4.1 Contributions
This thesis has contributed significantly to the body of knowledge in the field
of crowd simulation, with elements of this research presented in peer-reviewed
publications. Notably, [33] presents a unique characterization of the current state
of crowd simulation, identifying the existing limitations in current approaches. This
work forms the basis of the extensive literature review of the Background Chapter
2.

Furthermore, as detailed in [34], the research has also contributed towards the
integration of Menge and Unity 3D, enhancing Menge’s modeling tools to include
visual authoring GUIs for defining simulation scenarios and behavior. This aspect
is discussed more in-depth in Chapter 5.

The primary output of this work, the Agora framework, has been employed in
two unique projects (case studies). The first, explored in Section 6.1, investigates
the impact of visibility on tourist behavior, hypothesizing that more visible locations
attract individuals, particularly tourists visiting a location for the first time. This
hypothesis was initially modeled as a native simulation (developed from scratch
with Unity 3D), and later replicated with Agora to assess its ease of use. To validate
the simulation output, a field study was conducted at Þingvellir National Park in
Iceland, with the findings published in [106].

The second application of the Agora framework was in a simulation of an urban
environment, wherein the behavior of the agents was influenced by their thermal
comfort and crowd density comfort. The underlying model, derived from existing
literature, was successfully replicated with Agora, illustrating its capability to
conveniently adapt and enhance models from the literature. Further details on this
case study are provided in Section 6.2.

1.4.2 Thesis Structure
Chapter 2 presents a comprehensive literature review that decomposes the field of
crowd simulation into a set of sub-fields, highlighting key limitations that hinder
faster advancements in the domain. This review sets the stage for the introduction
of the proposed solutions. In Chapter 3, a theoretical framework centered
around the heatmap paradigm for modeling human behavior in crowd simulations

6 CHAPTER 1. INTRODUCTION

is introduced. This framework enables the combination of multiple models and
facilitates their evaluation through the heatmap approach. Following the theoretical
framework, Chapter 4 describes the system architecture, and Chapter 5 provides
a detailed implementation of the Agora framework. To demonstrate and evaluate
the practical applications of the Agora framework, Chapter 6 describes two case
studies that exemplify its capabilities and potential uses. Lastly, Chapter 7 discusses
the results obtained in relation to the problem statement. Chapters 8 and 9 explore
future works and conclusions derived from the contributions. These final chapters
of the thesis position the approach within a broader context, considering general
limitations and shedding light on the exciting opportunities the work unlocks for
advancing the field of crowd simulation.

Chapter 2

Background

Crowd simulation is a growing field of research due to its potential applications in
several areas, including, safety, urban planning, architecture, entertainment, and
training of public emergency response personnel. However, these applications require
agents capable of social reasoning to make the simulation model more believable.
To this end, researchers employ a range of social behavior theories studied in
psychology and sociology to generate and animate virtual human behavior in crowd
simulations. Several navigation algorithms have also been developed to enable
virtual humans to traverse space in increasingly realistic ways. Despite advances
in simulation techniques providing ways of objectively calibrating parameters and
validating simulation models, the field has become fragmented due to its reliance on
different components from sub-fields. This makes it difficult to compare, combine,
and ultimately predict the interactions between different models. To address this
issue, there have been several attempts to create frameworks for decomposing the
crowd simulation field into smaller sub-problems, such as Menge. However, these
frameworks cannot still combine several social behavior models, which is essential
for developing a unified framework. Further research is needed to create a unified
framework that can integrate different social behavior models and provide a platform
for the comparison and combination of existing models. Such a framework would
allow for the development of more complex and realistic crowd simulations, thus
advancing the field closer to reality.

This chapter presents an overview of the state of the art in crowd simulation,
reviews its constituent domains, and discusses the main challenges in the field. The
review of each subfield includes a description of the key concepts and techniques,
as well as the existing literature and open research questions. It is concluded
that, although the divide and conquer strategy has been successful in allowing
research progress in each subfield, there is a need for a unified framework that can
integrate these disparate subfields and provide a standard method for designing
and implementing crowd simulation models. The chapter begins by examining
human behavior, as it forms the essential foundation for accurately modeling crowd
simulations.

7

8 CHAPTER 2. BACKGROUND

2.1 Human Behavior

Figure 2.1: Proxemics inspect the four meaningful ranges of interpersonal distance
as introduced by Hall and Hall [62]; intimate, personal, social and public. To
initiate contact, a sequence of salutations is used to determine the suitable final
configuration. Figure from [144].

The study of human behavior in physical and virtual spaces has been a major
factor in the development of realistic crowd simulations and social negotiation
strategies for social agents. By understanding the structure and dynamics of social
space, and how it is affected by the presence of other humans, agents can navigate
and interact with their environment more effectively. This knowledge allows for
more natural and engaging interactions with those around them, as well as a better
understanding of the context in which the agents are operating. Research has also
helped to identify certain patterns of behavior among humans in social spaces,
which can be used to create better algorithms for negotiating co-presence, as well as
anticipating and responding to the behavior of others. Additionally, understanding
the various motivations and preferences of humans in social spaces can help agents
better tailor their behavior to suit the social occasion they are in. All of these
elements form a crucial part of developing agents that are capable of occupying and
managing social spaces, ultimately allowing them to interact with their surroundings,
and other agents, more naturally and effectively. This section provides an overview
of the research conducted in the field of human behavior, particularly its relation
to the physical social environment.

2.1. HUMAN BEHAVIOR 9

Concept Description Sources

social space Any space with mutual embodied access EG

gathering Collection of two or more people EG

social situation Space that adds people immediately to a gath-
ering

EG

social occasion Reason for a social situation EG

formation Tight cluster of coordinated activity within a
gathering

AS, AK

dyad Formation of two people AS

element Formation of people with common orientation AS

F-formation Formation of people facing each other AS, AK

o-zone Innermost zone covered by overlapping orienta-
tions

AS, AK

p-zone Zone occupied by formation participants AS, AK

r-zone Outermost zone serving as formation transition
area

AS, AK

Table 2.1: Some useful concepts that describe the structure of social space and
their sources (EG = Goffman [51]; AS = Scheflen [123]; AK = Kendon [78]). Table
adapted from [144].

2.1.1 Social Space
The configuration of the space is both an active and passive factor in the behavior
of humans in social spaces. The way space is organized can influence the behavior
of the people therein, and conversely, humans can arrange the space to suit their
needs according to specific social situations. For this reason, it is important to
understand the underlying structure of social space as it is perceived by human
beings.

This section provides an overview of the concepts and theories that have been
developed to describe the structure of social space and how the body is used to
occupy and manage spatial boundaries. Moreover, it discusses the importance of
physical presence in social spaces and how it affects the behavior of humans in this
context. For a summary see Tables 2.1, 2.2, and 2.3 which have been adapted from
[144].

Social Space and Physical Presence

Social space is a term that refers to any environment where people can access
one another through their physical presence [144]. All occupants of a social space
don’t need to be socially engaged with one another, but they must display minimal
social awareness and manage their co-presence. To better define the structure
of social space, researchers have agreed on a set of terms to describe its various

10 CHAPTER 2. BACKGROUND

Figure 2.2: An example of a conversational group organized as an F-formation with
the main functional spaces indicated. Figure from [79].

elements. Gatherings are loosely formed collections of people, while formations are
tighter clusters where more coordinated activities occur. Formations are made up
of individual locations that provide room for the individual’s actions, and these
locations can be pre-allocated or claimed by participants during a social event.
Among the most simple formations are dyads, which are composed of two people,
and elements, which are the ones where participants all face the same direction.
Another particular type of formation, proposed by Kendon is the face formation,
or F-formation, which occurs when participants are facing each other, as shown in
Figure 2.2, and usually divides the space so that each participant has equal access
to the interaction. The space occupied by and surrounding a formation has been
characterized into different zones, arranged in descending order depending on the
level of social engagement: o-zone, p-zone, and r-zone [78]. Physical structures,
such as furniture, can also influence the formation of gatherings and are sometimes
deliberately set up for facilitating social occasions. Overall, social space provides an
opportunity for people to interact with one another through their physical presence
and can be used to facilitate various types of social engagements.

The physical space occupied by a person in a social setting is an important
concept in the study of interpersonal relations and communication. By being
present in a social space, a person will occupy a certain physical volume. One
useful approximation of this volume is four cubic cubits. The cubit measure was
originally defined as the distance from a full-grown person’s elbow to the end of
their middle finger. While the physical body is bound to its exact location, four
different body regions also claim space beyond that location through independent
outward orientation. That is, by orienting the head, torso, pelvis, and legs/feet,

2.1. HUMAN BEHAVIOR 11

Concept Description Source

cubit Elbow to fingertip, approx. 0.5m AS

region one cubit3 sized portion of the body AS

location Area needed by person for action (approx. 2 × 2
cubits)

AS

segment Space claimed by body region orient. AS

territory The space both occupied and claimed by a per-
son

AS

intimate distance < 1cubit away, sharing location EH

personal distance Comfortable distance, between 1 to 3 cubits
away

EH

social distance Impersonal interaction distance, between 3 and
7 cubits away

EH

public distance Safe distance from anyone, over 7 cubits away EH

Table 2.2: Some useful concepts that describe the spatial structure bodies and their
sources (AS = [122, 123]; EH = [62]). Table adapted from [144].

four different segments of space are created and claimed, which can be combined in
pairs corresponding to the upper and lower body regions. The space occupied by
the person and their claimed segments are termed their territory.

The classification of distances, proposed by [62] and illustrated in Figure 2.1, has
resulted in four useful interpersonal distances: Intimate, personal, social, and public.
Intimate distance is closer than one cubit (0.5m away) thus more or less sharing
the same location. Personal distance corresponds to the comfortable distance one
typically maintains from others, which ranges from 0.5m to 1.5m. Social distance
is kept with those one intends to conduct relatively impersonal interactions with,
ranging from about 1.5m to 3.5m. Public distance is anything further than 3.5m
and would be considered a relatively safe distance from anyone.

Behaviors in Social Space

Understanding the structure of social space and how the body is used to manage
spatial boundaries is crucial to understanding human behavior in social settings. This
section provides some examples of phenomena that occur in social space, including
the interaction between people, the formation of groups, and how emotions influence
behavior. By examining these behaviors, it is possible to gain insight into how
individuals interact with one another and how they navigate the complex dynamics
of social space.

Interaction. Social norms shape behavior in social spaces. As identified by
Goffman, these behaviors can be classified into two main categories: those that
belong to unfocused interaction and those that belong to focused interaction.

12 CHAPTER 2. BACKGROUND

Unfocused interaction is what occurs when people are merely managing their co-
presence in the social space. This involves navigating the space without causing
others distress, staying at least a personal distance away, and following established
paths such as streams and lanes. People also need to signal an expected level of
social awareness and may use involvement shields to maintain public distance from
other people and prevent others from engaging. In contrast, focused interaction
involves an extended social engagement or involvement, such as a conversation or
watching something together. Several behaviors can be observed in this context,
such as pointing towards a clear visual reference and orientating the head towards
the interested party with a minimal orientation towards others. Additionally, people
participating in focused interaction can establish and maintain membership in
formations, and show different levels of commitment through body orientation,
exposure, and tactile contact. These behaviors and their interpretation have been
implicitly encoded in the social norms of each culture, and understanding these
dynamics is key to successful engagement in social situations.

Social Groups. The behavior of individuals within social groups has been the
subject of intense study due to its relevance to fields such as sociology and psychology.
One of the most notable aspects of social behavior in groups is the tendency for
individuals to exhibit coordinated movement or behavior. For example, herding
is a type of social behavior where individuals in a group align their thoughts or
actions through local interaction without centralized coordination [112]. Herding
has broad applications, from intellectual trends to mob violence, and is relevant
in an increasingly interconnected world where people are part of ever larger social
groups. When the herding behavioral pattern is applied to the movements of
individuals, it is referred to as flocking. Flocking is particularly observed in animals
such as bird flocks but, as noted by Belz et al. [14], the basic components of this
behavior can be observed in human groups as well. Faria et al. [44] substantiated
this claim by showing that individuals near a person crossing a street were inclined
to mimic the action and cross the street earlier than those further away. This
suggests that humans in group settings utilize social cues from their immediate
peers to maintain proximity, resulting in conformity to their neighbors’ actions.
Finally, leader-following behavior refers to the tendency of individuals in a group
to follow the actions of a perceived leader. This behavior plays a crucial role in
group dynamics, particularly in emergencies where quick decisions and actions
are necessary [35]. However, it can also lead to conformity and a lack of critical
thinking, potentially causing the group to overlook important information or make
poor decisions.

These group dynamics are believed to emerge from the interactions among
individuals in the group and are thought to serve a variety of functions, including
reducing individual risk, improving group efficiency, and facilitating communication.
Thus, they play a crucial role in the behavior of people in social groups.

Social Networks. Another factor that plays an important role in influencing the
behavior of people in social spaces is the formation of social networks. Researchers
from anthropology and social sciences, such as McPherson et al., highlight the

2.1. HUMAN BEHAVIOR 13

importance of geographic homophily in shaping various human societies. Homophily
refers to the tendency of individuals to associate and form connections with those
who are similar to them. As a result, people who know each other tend to live and
gather in specific spatial locations, increasing their chances of interaction. It is
worth noting that people form communities not necessarily to achieve certain goals,
but rather because they naturally interact and come into contact with each other
regularly. This concept highlights the social and cultural factors that contribute to
the formation of human social groups and societies [96].

Researchers can employ social network analysis techniques [100] to examine
how individuals who share similar characteristics, such as interests, beliefs, and
values, form connections and develop social ties with one another. By analyzing the
network structure and composition, researchers can identify patterns of homophily
and understand how these patterns shape the formation and dynamics of social
groups. Additionally, social network analysis can be used to examine the behavior
of individuals within these social groups. Researchers can examine how individuals
interact with one another, the roles that they play within the group, and how their
behavior may be influenced by the characteristics of the social network in which
they are embedded.

Emotion contagion. Emotional contagion is a process where an individual’s
emotions and moods can be influenced by those around them [69]. It is a form of
mimicry where facial expressions, vocalizations, postures, and movements of others
can lead to emotional convergence. Emotional contagion is a complex phenomenon,
influenced by psychophysiological, behavioral, and social factors, and can elicit
similar or complementary responses. This phenomenon is important because it can
produce synchrony or entrainment of attention, emotion, and behavior, which has
an adaptive function for social entities. Several basic processes have been proposed
to explain emotional contagion. Hatfield et al. [65] examines interactional mimicry
and synchrony as a possible mechanism for emotional contagion. The authors
suggest that people automatically imitate and coordinate their behavior with those
of others during social interactions, leading to the spread of emotions from one
person to another. This feedback loop of mimicry and emotional contagion appears
to be an unconscious and automatic process. McIntosh et al. [94] suggests that the
strength of the contagion may be influenced by the similarity or likability of the
source by the target.

Emotional contagion is important in the context of group dynamics because it
can have a significant impact on the emotional climate of a group and influence
the behavior and attitudes of group members. Thus, understanding how this
phenomenon occurs and how it influences the behavior of individuals, can give
additional insight into social group dynamics.

The structure of social space, the physical volume of an individual therein, and the
behaviors that people engage in to carry out social functions are important concepts
that have been extensively studied in social sciences and have been formalized into
theoretical frameworks of social intelligence and social cognition.

As seen in Figure 2.1 and 2.2, these concepts are particularly suited to be

14 CHAPTER 2. BACKGROUND

Concept Description Sources

unfocused interaction Co-presence without meaningful interaction [51]
focused
interaction

Commitment to social engagement or involve-
ment

[51]

navigating Moving through space while avoiding colli-
sions

Any

following Navigating behind another person that picks
the path

Any

civil inattention Minimal eye contact to signal awareness with-
out engagement

[51]

involvement shield Avoiding social involvement by preventing
mutual observation

[51]

approach Navigating toward another person with intent
to engage

[80, 78]

commitment How interested a person is in interacting with
another

[123]

herding Coordinated decentralized behavior [112]
flocking Herding applied to movement [14]
leader-following Mimicking actions of a leader [35]
homophily Tendency to associate with similar individu-

als
[96]

Emotional contagion Tendency of people’s emotions to be influ-
enced by those around them

[69, 65, 94]

Table 2.3: Some useful concepts that describe behaviors in social space. Table
adapted from [144].

expressed in 2D space. Specifically, it is possible to encode them through two-
dimensional social behavioral maps that provide a visual representation of the
complex structure of social space, including physical dimensions and social norms
that guide behavior. The use of 2D social behavioral maps enables researchers to
represent the complexity of social space in a simplified visual form, facilitating the
identification of patterns and relationships. For example, a 2D social behavioral
map of a park could include the location of benches, playgrounds, and walking
paths, as well as the expected behaviors and social norms governing the use of the
space. Additionally, individual characteristics of park visitors such as age, gender,
and race, can also be included to provide a more comprehensive understanding
of the social dynamics at play. A more detailed discussion of this topic will be
presented in Chapter 3.

These concepts are important for understanding how people conduct themselves
in social environments and have been extensively referenced by those developing
algorithms that can simulate the behavior of humans in social spaces – which will
be discussed in the next section.

2.2. COMPUTER SIMULATION 15

2.2 Computer Simulation
The study of human behavior is essential for creating realistic crowd simulations for
socially interactive agents. The concepts of gatherings, formations, proxemics and
territoriality have been adapted into algorithms and computational models to analyze
and simulate the behavior of humans in social spaces. These algorithms are used in
computer simulations to model the structure and dynamics of social space and to
identify patterns of behavior among humans in social contexts. By understanding
the underlying structure of social space and how it is affected by the presence of
other humans, algorithms can be used to generate realistic crowd simulations and
social negotiation strategies for virtual agents. Furthermore, research has also been
done to understand the motivations and preferences that influence the behavior of
humans in social spaces, which can be used to create computational models allowing
virtual agents to anticipate and respond to the behavior of others. This has enabled
the development of more natural and engaging simulations of crowds of people.

What is Crowd Simulation?

Crowd simulation is the process of simulating the movement and the behavior of a
large number of people [136]. The term social crowd simulation refers in particular
to such simulation based on theories of human social behavior. These theories
provide explanations for how human behavior is influenced by the behavior of other
humans, as well as by the context in which the behavior takes place.

The Structure of this Section

This section is organized as follows. First, a few applications of crowd simulation
are presented to give an overview of the field and highlight the importance of social
behavior in crowd simulation. Then, the remainder of the section will provide
an overview of the main components of crowd simulation. First, an overview of
the main techniques available for generating diverse crowds of characters will be
presented: heterogeneous crowds foster the creation of more realistic, immersive and
believable simulations, promote inclusivity, and provide robust data for research.
Then, a review of existing computational behavior models will be provided. Those
are mathematical or algorithmic formalizations of theories, usually from sociology
and psychology, designed to simulate the behavior of agents in a crowd. These
models help researchers to better understand group dynamics and behaviors and
are used to simulate how agents interact and behave in different situations. After
that, the field of navigation algorithms will be explained. This includes global
pathfinding and local obstacle avoidance, which are two important techniques used
in navigation systems. The former is used to find the most efficient route from a
starting location to a destination, while the latter dynamically re-plans the route
to account for moving obstacles. These two algorithms work together to provide
a reliable and safe navigation system for crowd simulation agents. Finally, the
section will conclude with a discussion of the calibration and the evaluation of
crowd simulation models. These are two essential steps in ensuring accurate and
reliable results. Through the use of real-world data and comparison of outcomes,

16 CHAPTER 2. BACKGROUND

Field Description Sources

Virtual Heritage Historians have employed autonomous virtual
people to bring the past back to life.

[92, 27, 18]

Entertainment Crowds are used in video games and movies to
fill backgrounds and enhance player mechan-
ics.

[13, 102,
124]

Architecture Inform architectural design, generate and
simulate crowds in virtual cities, and optimize
layouts of buildings.

[119, 46,
91]

Safety Development of better safety protocols and
design of safer buildings through emergency
simulations.

[67, 107,
98, 68, 60]

Table 2.4: Some fields of application for crowd simulation.

it is possible to identify discrepancies between the model and reality and make
adjustments to the parameters to improve the accuracy of the simulation. Ultimately,
this process helps to ensure that models reflect the behavior of the crowd, and can
be used to identify areas of improvement and suggest changes to the model.

2.2.1 Crowd Simulation Applications
Realistic crowd simulation has become a fundamental research topic in computer
science due to its potential useful application in many different fields. This section
presents some examples of how autonomous virtual people can be used to recreate
historical settings, improve the entertainment industry, facilitate architecture design,
and predict safety features, as summarized in Table 2.4.

Virtual Heritage. One example is the field of virtual heritage, where historians
have employed autonomous virtual people to bring the past back to life. These
simulations involve the accurate reconstruction of historical settings in complex
3D environments, and the recreation of the behavior of the people who lived in
those settings. Some noteworthy cases of this application can be found in the
literature and include: the simulation of ancient Pompeii [92] the reconstruction
of a Roman Odeon in Turkey [27], and the reenactment of ancient Mesopotamia
[18]. All of these works aim to reenact historical environments by employing crowd
simulations. It can be noticed that a lot of resources were spent on implementing
agent navigation at the expense of social behavior, which is often left as future
work. Upon examining the limitations of these projects, it becomes evident that a
framework is required that can alleviate the burden of addressing the complexities
of navigation system intricacies, and instead focus on modeling essential social
behaviors.

2.2. COMPUTER SIMULATION 17

Entertainment. Crowd simulation has also helped the development of the en-
tertainment industry concerning video games and movies. Beacco et al. [13] and
O’Connor et al. [102] mentioned the fundamental role played by crowds in two very
different video game genres. They can be used in sports games such as FIFA as
passive entities to fill the background, or they can even be employed to empower the
player with new game mechanics. For example, in the cases of Assassin’s creed and
Hitman, the player can blend inside the crowd and sneak around the environment
[13, 102]. In terms of movie production Scott explained how most of the digital
human motion in “The Lord of The Rings: The Two Towers” crowd scenes was
created with a crowd simulation program called “Massive” [124].

Architecture. Another line of work is one of architecture where several projects
have shown how crowd simulation can lead to better-informed design. One example
presents a framework capable of generating and simulating crowds in virtual cities
[119]. With this approach city planners could conveniently experience how people
interact with a particular architectural design. Feng et al. developed a novel
approach for designing mid-scale layouts optimized for human crowd properties. In
their work, they optimize the layout of a shopping mall to accommodate human
features such as mobility, accessibility, and coziness [46]. Moreover, Mathew et al.
presented a system to generate a procedural environment that produces a desired
crowd behavior [91]. This approach enables the definition of goals achieved by
automatically altering the environment. All of the aforementioned examples were
implemented employing custom software solutions that are often resource-consuming.
For this reason, many architectural firms cannot access such solutions and need a
convenient way to perform crowd simulation.

Safety. One last example of a field where crowd simulation has had a critical
impact is on predicting safety features, where much effort has been put into modeling
human behavior during emergencies such as evacuation scenarios [67, 107, 98, 68].
Realistic crowd simulation enables researchers and engineers to better understand
human behavior during emergencies. By simulating the movements and actions of
crowds, such as in the case of building evacuations, researchers can test and validate
different safety protocols and evacuation plans, which can save lives in real-world
situations. Additionally, crowd simulation can be used to predict the effectiveness
of different design features, such as the placement of exits or the width of staircases,
in emergencies. This can help architects and engineers design safer buildings and
spaces. This interest has evolved into industry-leading software solutions that deal
with evacuation safety in various scenarios. One such solution is Exodus which
comprises a suite of software packages, tailored to the building, maritime, rail and
aircraft environments. Exodus has been employed in several projects featured in the
literature [26, 157, 134, 59] and, given the criticality of this field, it is continuously
being validated [60].

All these applications would benefit from agents capable of social reasoning,
as they make the simulation model more believable. This has sparked a growing
interest in creating virtual humans capable of displaying social behavior.

18 CHAPTER 2. BACKGROUND

2.2.2 Variety in Crowds

Figure 2.3: Different approaches to introduce variety: (A) Skeletal modification
to vary height (B) Using accessories to mask similarities (C) Different walking
animation cycles. image adapted from [138]

Generating diverse and variegated virtual characters is crucial for creating a
realistic and believable crowd simulation. Real-world crowds are naturally diverse
in terms of age, gender, race, and other characteristics, and generating diverse
characters in a simulation helps to replicate this. Additionally, a diverse crowd
can add a sense of depth, complexity, and context to a scene, and can make the
simulation more interesting and engaging for the viewer. Representing a variety of
characters in a crowd simulation also helps to avoid perpetuating stereotypes and
biases, and instead create a more inclusive and representative simulation.

At the same time, creating heterogeneous characters for crowd simulations can be
a challenging task due to a variety of complex, time-consuming, and cost-prohibitive
factors. Complexity arises from the need to craft detailed, realistic, and expressive
characters. Time-consuming tasks include the creation of multiple designs, textures,
and animations. Technical limitations further complicate the process, as advanced
techniques and software may be necessary to create a character with a wide range of
variations. Additionally, the cost of these resources and services can be prohibitive.
Furthermore, memory and storage capabilities may be inadequate to store characters
with a wide range of variations in their appearance. Finally, consistency in style
and appearance requires a good understanding of design principles and a high
level of skill in computer graphics. Ultimately, creating diverse and variegated
characters in computer graphics is a complex and difficult endeavor. But, despite
the challenges, with the right resources and techniques, it is possible to create
characters with a wide range of variations and customizations. Thus, this section
discusses some of the approaches available for generating diverse and variegated
crowds of virtual characters, such as appearance variety, accessor diversity, and
animation customizations (see Figure 2.3), as well as the challenges that remain for
the future of this field.

Human Templates

The work of Thalmann et al. provides a good overview of the techniques and tools
that can be employed to address these generation challenges [138]. The authors

2.2. COMPUTER SIMULATION 19

Technique Description Sources

Appearance
Variety

Dynamic modification of the character’s shape
and colors by using a human template skeleton
and scaling it.

[89, 135,
36, 55]

Accessory
Diversity

Adding accessories (e.g., watches, hats, back-
packs) to the human template original mesh to
achieve shape variety.

[29]

Animation
Customizations

Generating many locomotion and idle cycles,
introducing upper-body variations, adding proce-
dural modifications.

[49, 109,
132]

Table 2.5: Techniques to achieve variety in a crowd.

argue about the infeasibility of achieving character variety through traditional
means, such as designing and modeling as many virtual characters as there are
people in the crowd. They explain that a more reasonable approach is to use human
templates defined by the characters’ skeleton, mesh, and set of textures. These
templates can then be instantiated multiple times while using different components
dynamically varied by applying color and shape techniques. Moreover, to generate
many locomotion animations for each human template, a motion-capture-based
locomotion engine can be used, as well as an inverse kinematic system to apply
upper body variations to the characters. The generated animations can then be
applied to meshes that are deformed at runtime. Through this method, large crowds
with varied individuals can be generated. Their work is particularly focused on
three aspects, summarized in Table 2.5, of character generation: appearance variety,
accessory diversity, and animation customizations.

Appearance variety. One way to achieve appearance variety is to dynamically
modify the shape of the human template [89, 138]. This involves modifying sep-
arately the height of the human body and its shape by using a human template
skeleton and scaling it, as shown in Figure 2.3 (A). Naturally, different body parts
have different proportions, and the authors propose a method to scale the human
template skeleton in a way that preserves them. This is done through a FatMap,
painted for a given template, which is used to emphasize body areas that store fat.
The FatMap values are then used to automatically infer one value for each vertex of
the template’s mesh. The scaling direction of each vertex is then computed as the
weighted normal of the bones influencing it, and the extent to which the body is
scaled is defined by a fat scale. This approach allows for mixing various attributes
such as body height (short or tall) and size (narrow or wide).

A different method to achieve appearance variety is to modify the color of the
various components of the human template, such as the skin, hair, and clothes of
the character [135, 36, 55]. Previous work has put forward the idea of dividing
a template into several body parts, identified by specific intensities in the alpha
channel of the texture. However, when dealing with characters close to the camera,
this approach has several drawbacks, such as sharp transitions between body parts.

20 CHAPTER 2. BACKGROUND

To overcome these issues, it is possible to employ a method based on segmentation
maps. Through its channel intensities, this method allows for each texel to partially
belong to several body parts at the same time, thus enabling smoother transitions
between body parts [138].

Accessory Diversity. Accessories represent a simple and efficient alternative to
costly human template modeling [138]. Accessories represent small meshes that can
be easily added to the human template original mesh, ranging from subtle details
such as watches and jewelry to larger items like hats and backpacks. By distributing
accessories to a crowd of human templates, each instance can be made unique in its
shape, as shown in Figure 2.3 (B). These accessories are attached to a skeleton and
follow its animation when moving, and can be rendered at the correct position and
orientation accordingly to the movements of the character. Depending on the type
of accessory, slight modifications of the animation sequences may be required, such
as blocking joint movements or applying procedural modifications at runtime. For
more complex accessories, such as a cellphone, pre-process modifications may be
necessary using an inverse kinematic tool. This approach was employed by Ubisoft
to create a large crowd of characters for the game Assassin’s Creed [29], where a
limited number of human models were equipped with different hats to give the
impression of a large crowd. Overall, accessories offer an efficient way to vary the
shape of a crowd of human templates with limited resources and computational
efforts.

Animation Customizations. Another important aspect to consider while striv-
ing for variety in a crowd is the animation of the characters, as shown in Figure
2.3 (C). The work of [138] mentions three techniques that allow for variation in
the animation of characters: (1) generating a large set of locomotion and idle
cycles that are categorized by type; (2) introducing upper-body variations such as
having a hand on the hip or in a pocket; and (3) adding procedural modifications to
locomotion animations to allow characters to wear complex accessories dissimulating
similarities. They also explain how a particular locomotion engine can be used
to generate walk and run cycles, which can then be modulated by personification
weights, speed, and locomotion weights [49]. Another approach for introducing
variation is to blend different keyframe animation clips by interpolating the values
of each joint based on a set of parameters. This can be done with animation blend
trees, as explained in [132]. A more involved approach proposed by Pelechano
et al. is to use an animation planning mediator (APM) to synthesize animations
efficiently for virtual characters in real-time crowd simulation. The APM selects
appropriate animation clips, modifies the skeletal configuration of each character to
eliminate foot-sliding and restrict upper body torsion, and blends animations using
a hardware-accelerated character animation library. By introducing this variety
into the mix, virtual humans walking together with different locomotion styles and
speeds add to the realism of the simulation.

So far, this section has presented a variety of techniques that can be used to
achieve variety in a crowd of virtual humans. The remainder of this section will

2.2. COMPUTER SIMULATION 21

discuss several practical tools that can be used to implement these techniques. A
summary can be found in Table 2.6.

Tool Description Sources

MakeHuman Open-source 3D character creation suite
with customizable features, tools for poses
and animation, and export functions.

[2, 19]

Reallusion Character
Creator

Powerful 3D character creation tool with
tools for customization with a wide library
of pre-made characters and add-ons.

[4, 77]

Unreal Engine
MetaHuman

Powerful framework for creating photoreal-
istic digital humans for video games, movies
and more.

[5, 42, 25]

Unity Multipurpose
Avatar (UMA)

Free character creation system for dynam-
ically creating varied characters through
adjustable DNA values, custom colors, and
a wardrobe of items.

[3, 120]

AI Synthesizers Machine learning based solutions for cre-
ating 3D avatars and characters from 2D
images.

[155, 86, 140,
40]

Table 2.6: Practical tools to achieve variety in a crowd.

Static Character Creation Frameworks

Since designing and creating a large number of characters from scratch is a time-
consuming and costly endeavor, several frameworks have been developed to expedite
the process. Among these, static character creation frameworks are powerful tools
that help developers quickly generate virtual humans. These tools provide a wide
range of options for customizing the appearance of characters, from body shape and
skin tone to hairstyle and facial features. Additionally, they include tools for rigging
and animating the characters, making it easy to use them in a variety of settings.
The resulting models can then be exported in a variety of standard formats for 3D
meshes (FBX, OBJ, etc..) to be used in other applications.

Some examples of this category of frameworks include MakeHuman, Reallusion
Character Creator, and Unreal Engine MetaHuman. By using these frameworks,
developers can quickly create detailed characters in a fraction of the time. This
section will provide an overview of these frameworks and discuss their advantages
and disadvantages.

MakeHuman. MakeHuman [2] is an open-source character creation suite devel-
oped in Python that allows users to create 3D human characters with a variety of
customizable features such as gender, age, ethnicity, muscle, weight, proportions
and height. It allows users to edit macro and detail attributes such as skin, hair,
eye shape, finger length, clothing, facial expressions, material properties and more.

22 CHAPTER 2. BACKGROUND

The suite provides tools for poses, animation cycles, and 21 human measurements
that can be adjusted, including height, chest, waist and hip circumference, and
neck circumference and height. It uses fuzzy set theory, weighted vertices and
a linear combination of rotation and translation morphing to deform the model.
MakeHuman’s main parameters are divided into groups, and when one parameter
is modified, a specific group of modifiers is applied. The MakeHuman project is
developed by a community of programmers, artists, academics, and enthusiasts
interested in 3D computer models of human beings and allows for exporting to
other software for further refinement. One drawback is that the base human meshes
produced by MakeHuman are not of a high enough quality to be on par with the
meshes created by other frameworks that meet today’s standards. For a more
detailed description of the framework, refer to [19].

Reallusion Character Creator. Reallusion Character Creator [4] is an advanced
3D character creation software designed to produce realistic 3D characters for
use in a variety of digital environments. This software provides users with a
comprehensive suite of tools to customize facial features, body type, clothing, and
other characteristics to create a unique 3D character. It also includes a library
of pre-made 3D characters and props, which can be used to create a scene or
environment, as well as a range of physical and emotional expressions which can
be used to animate the character and make it appear more realistic. Character
Creator offers a selection of add-ons to expedite the character design workflow,
provides access to a character library made by professional designers and 3D artists,
and can be easily integrated with game engines such as Unreal and Unity. Finally,
it includes a character reduction feature that can optimize characters for large
crowd simulations through advanced level of detail mesh simplification techniques.
Overall, Character Creator is a relatively good option for those looking to design
realistic 3D characters for use in digital projects, such as [77], where it can provide a
comprehensive set of tools to quickly and easily generate high-quality 3D characters.
On the other hand, it is expensive, and it is not open-source, which may be a
drawback for some users.

Unreal Engine MetaHuman. MetaHuman Creator [5] is a novel browser-based
application developed by Epic Games, the company behind the Unreal Engine,
that enables users to quickly generate photorealistic digital humans, fully rigged
and complete with hair and clothing [42, 25]. MetaHuman Creator can be used
in combination with motion capture and animation technology to create realistic
movements for video games, movies, television, and other interactive scenarios. The
workflow allows users to choose from a range of preset faces, as well as modify
teeth, bones, and other features of the virtual character. It is also possible to blend
existing examples in the library, to easily craft novel characters without much effort.

Metahuman strives to bridge the gap between real and virtual characters, by
creating lifelike digital characters that can interact in real time. While the discomfort
experienced when encountering an artificial or humanoid entity that is almost, but
not quite, convincingly human-like, known as the “uncanny valley”, is still present,
the project is a step in the right direction towards achieving a level of realism that

2.2. COMPUTER SIMULATION 23

can be accepted and enjoyed by the consumer.

Dynamic Character Creation Frameworks

Dynamic character creation frameworks are similar to their static counterparts,
but they allow for more flexibility in the customization of characters, especially
at runtime. This means that the user has access to a character template and can
define several parameter ranges for each feature of the character, such as body
characteristics as well as clothing, accessories, and colors. These ranges are then
queried at runtime to generate a unique crowd of characters, which are different at
each iteration. One example of this type of framework is the Unity Multipurpose
Avatar (UMA).

Figure 2.4: UMA Character with some of its DNA values.

Unity Multipurpose Avatar. UMA [3] is a free character creation and modifica-
tion system for Unity which allows creating crowds of virtual characters displaying
varied traits and features. The system comes with standard male and female human
models, composed of a fully rigged 3D mesh and the relative textures. These models
are tied to the respective standard DNA definitions, which define the baseline sizes
for each bone group in the 3D mesh, as shown in Figure 2.4. It is then possible
to deform the mesh by altering the DNA values, thus creating characters with
varied shapes and sizes. Additionally, it is possible to define a custom set of colors
that are going to be applied to the skin, hair and eyes. Finally, another way to
introduce variety in the UMA crowds is to create a custom collection of clothes
called a wardrobe. These items are 3D meshes rigged on the same skeleton of the
UMA character, and so they adjust to the DNA modifications as well. The crowds
can then be dressed with different items from the collection so that, even if two

24 CHAPTER 2. BACKGROUND

characters share the same DNA and colors, they will still appear different. It is
worth noting that any 3D mesh can be part of the collection. This includes any
gadget that one desires to give to the character, and in fact, even hairs are part of
the wardrobe - so the characters have many hairstyles.

There are two main ways of working with UMA characters: either through the
Dynamic Character Avatar, or the Random Generated Character. The first method
allows instantiating one single character and manually giving them a static set of
features (DNA, colors and wardrobe) at design time – which will always be the
same across multiple simulations. The second way allows instantiating a population
of characters based on a randomizer. The randomizer is a probability distribution of
features bound to limited ranges. So, for example, it is possible to specify that the
population should be between 1.5m and 2m tall; should have blonde hair 20% of the
time; or have 10% probability of wearing glasses. It is then possible to specify how
many characters to generate with this randomizer, and they will be instantiated
when the simulation starts. For this reason, the population is going to look different
every time a new simulation is performed.

UMA has been employed in several projects, such as [120], where it was used to
generate a crowd of 3D characters for testing collision avoidance algorithms.

AI-based synthesizing

The advent of machine learning has opened up a range of promising possibilities
in computer graphics, including the generation of fully rigged 3D characters from
images. This technology offers several benefits in the field of crowd simulation,
allowing the creation of a larger, more varied population of 3D characters than
would otherwise be possible. One of the main advantages of machine learning-based
character generation is the efficiency with which it can be achieved. Through the
use of deep learning algorithms, a database of images can be used to create a
large population of 3D characters with unique facial features and body types. This
eliminates, or at least reduces, the time and effort required to manually construct
each character, leading to a much faster and more efficient process. This approach
can be both scalable and flexible: once a machine learning model has been trained,
it can be used to generate any number of 3D characters, making it easy to create
large numbers of characters quickly and efficiently, and it can be adapted to work
with different types of images and 3D models, making it easy to create a wide range
of characters with different styles.

Although the generation of 3D characters from images through machine learning
is a relatively novel field, and many aspects can be improved, it has already been
successfully incorporated into several different applications. Some examples of
academic research applications include the works of Zhang et al. and Li et al.,
both offering pipelines for the reconstruction of 3D human avatars and characters
from a single image employing Generative Adversarial Networks (GANs) [155, 86].
Moreover, there are several commercial applications of this technology, such as
AvatarSDK [40] and Wolf3D [140] that offer a variety of tools for the creation of
3D characters from images.

2.2. COMPUTER SIMULATION 25

This section has discussed various approaches to the creation of 3D characters
for use in crowd simulation, along with the related practical tools and frameworks.
These techniques can be used to introduce appearance variety into the crowd, both
at the visual level and at the animation level. However, what ultimately makes
crowds believable is how the individuals behave, so the next section will discuss the
state of the art of computational models that have been employed to implement
human behavior theories in crowd simulation.

2.2.3 Computational Behavior Models

Figure 2.5: Left: main territorial fields of Scheflen’s classification. Right: corre-
sponding implementation by Pedica and Vilhjálmsson [105].

Crowd simulation involves using computer-generated agents to realistically
simulate the motion of people and other entities in a virtual environment. Recent
advancements in this field have enabled the creation of increasingly convincing
simulations of human motion in 3D space. This is achieved by extending the
underlying motion simulator with new and improved theories of perception and
movement. This section discusses the state of the art of computational behavior
models for social theories that have been employed in crowd simulation, as well as
the challenges that remain for the future of this field. Each model has its theoretical
foundation in the social sciences, discussed in section 2.1, which is implemented in
a computer simulation model. A summary of the main categories is provided in
Table 2.7.

Social Group Models One set of theories studies the formation of groups of
individuals and regulates how people deal with aggregate motion. A possible
way of modeling group behavior is presented by Li and Lin through the use of
graph theory and social networks analysis [85]. The authors perform an initial
agent-based crowd simulation without considering social factors. Afterward, they

26 CHAPTER 2. BACKGROUND

Category Description Sources

Social Group Models Forming groups among individuals and how
people manage collective movement.

[85, 12, 101,
76]

Social Emotion Mod-
els

Modeling emotion contagion, panic, and
hierarchical structures in emergencies.

[90, 151, 83,
45]

Social Activity Mod-
els

Models of social crowds have been en-
hanced by artificial life simulations that
capture daily life scenarios.

[129, 70]

Table 2.7: Some useful categories of social theories and corresponding models
employed in crowd simulation.

create a social network based on the interactions that happened between agents
during the simulation. The resulting social network can later be used to create a
crowd simulation accounting for social connections among agents. Pertaining to
navigation, Bayazit et al. employed Rule-Based Roadmaps for better group Path
Planning [12]. They propose to extend navigation meshes, usually only employed
to compute trajectories, with additional group behavior information. This means
that whenever a group member reaches a particular position in the road map,
the system triggers a specific behavior such as herding, leader-following and so
on. Niederberger and Gross proposed a system that provides mechanisms for
group behavior and group definitions [101]. With their approach, it is possible
to diversify background character behaviors, by extending and combining generic
behavior definitions. Pedica and Vilhjálmsson implemented Kendon’s social theory
of F-formation for agent conversation into the simulation of virtual humans. As
shown in Figure 2.5, the authors employed the concept of human territories to
model how humans behave in and around group conversations. Group members
can invite others into their formation through eye gaze, positioning and orientation.
This model was later extended by Karimaghalou et al. with group-leaving and
group-revisiting mechanisms based on habituation and boredom theories [76].

Social Emotion Models An important aspect of human behavior is emotion
contagion which describes how people’s emotions are influenced by those around
them. For this reason, Mao et al. extended a crowd simulation system by incor-
porating agents’ personality through a five-trait model, often referred to as Big
Five, and employed an emotion group contagion model based on thermodynamics
heat dissipation called ASCRIBE [90]. Faroqi and Mesgari brought this concept to
emergencies, modeling the effect of panic during evacuations [45]. Other approaches
investigate the impact of groups in emergencies, for example, by equipping agents
with the following behavior [151, 125], or by modeling the formation of hierarchical
structures [107, 73, 111]. Furthermore, Lee et al. uses machine learning to extract
group trajectories from videos in various emotional settings, learn their patterns,
and replicate them with virtual agents [83].

2.2. COMPUTER SIMULATION 27

Social Activity Models Social crowd models have also been enhanced by the
inclusion of daily life scenarios, sometimes referred to as artificial life. One example
is the pedestrian simulation by Shao and Terzopoulos who replicated New York’s
Penn Station and modeled the behavior of hundreds of people [129]. The pedestrians
were driven by a high-level cognitive control, in charge of deciding destinations
and activities such as sitting to rest, watching performers, chatting with friends
and queuing up at vending and ticketing machines. This decision mechanism was
then coupled with reactive local navigation controls, to ensure smooth traversal of
the environment. The result was an impressive showcase of a crowd in a complex
environment, but on closer inspection, the behaviors were individualistic and lacked
social awareness. Another example is the work of Huang and Terzopoulos focusing
on a framework for simulating Doorway Etiquette [70] based on three main factors:
(i) effort, a person is more likely to hold doors for another that does the same;
(ii) care, it is more compelling to help people in need; and (iii) emotion, based
on kindness and rush. These factors are encoded with a Bayesian network, which
yields the appropriate door-holding behavior – realized by a locomotion system.
This system was shown to produce convincing real-time behaviors for small crowds,
of up to 16 people.

In summary, the examples of computational models above can be classified
into three main categories: (i) social group models, which focus on the formation
and behavior of groups in collective movement; (ii) social emotion models, which
address the influence of emotions, panic, and hierarchical structures, particularly
in emergencies; and (iii) social activity models, which enhance crowd simulations
by incorporating artificial life scenarios and daily life activities. To be run in a
simulation, these models need to be implemented in a way that can be executed by
the agents. This usually requires agents to be capable of traversing the environment
and possibly avoiding or interacting with other agents. The next section will discuss
the main techniques for navigation and obstacle avoidance in crowd simulation.

2.2.4 Navigation Algorithms
As a technical layer, on top of which higher-level social models are commonly built,
a navigation algorithm is essentially a solution for making an agent successfully
traverse an environment, from a starting position to a destination position, without
getting stuck. Such algorithms can be classified into local and global approaches,
according to the amount of information that is being processed. Global navigation
computes a complete path leading the agent to its destination, but this can be
resource expensive because it needs to account for all possible trajectories [6].
On the other hand, local navigation only works with the general direction to
the destination and tries to guide the agent moment-to-moment considering its
immediate surroundings. In practice, these approaches are often used in combination:
global path planning is performed once considering only static obstacles, and then
the agent employs local obstacle avoidance to steer around the environment.

28 CHAPTER 2. BACKGROUND

Global Path Finding

This section gives an overview of the main techniques available for finding routes
between a source point and a destination and is summarized in Table 2.8. For an
in-depth review, refer to [6].

Technique Description Sources

Uniform Grid Superimposes a grid over the environment to
generate paths via traversing cells.

[153, 64,
104, 128]

Visibility Graphs Visibility graph approach stores vertices in
a graph and computes line of sight to find
optimal paths.

[48]

Waypoint Graph The environment is subdivided into regions
and points are connected in a graph, which
can be searched to find navigation trajecto-
ries.

[148]

Navigation Mesh Graph of convex polygons that define
traversable areas. Agents navigate within
polygons directly and use graph search for
pathfinding.

[31, 108,
113, 139,
114]

Cellular
Automata

Simulates pedestrian movement using a cen-
tralized entity that moves agents among cells
with strict mechanics.

[16, 21, 17]

Table 2.8: Global pathfinding techniques.

Uniform Grid. One global path planning approach is to superimpose a grid
over the environment, and then produce paths by traversing the cells [153]. The
grid cells can be of several shapes [64, 104, 75] and sizes [128], and this affects
the number of adjacent cells. Traversing any two connected cells has a uniform
cost, which simplifies pathfinding. The most evident limitation of this approach is
the difficulty of matching a grid over the environment. This drawback makes the
approach suitable mainly for rather simple topologies.

Visibility Graphs. Another approach is called visibility graph, which consists
of saving the vertices of the geometry in a graph, and then computing whether
there is a line of sight between any two vertices [48]. If such a line exists, agents
can navigate between them without encountering any obstacles. The graph can
be searched to retrieve an optimal path between a source and a destination. This
approach can suffer from memory overhead for complex environments.

Waypoint Graph. A similar approach, the waypoint graph, consists of processing
the geometry to find the most relevant points in the environment. For example,
one could subdivide the environment into regions, voxelize the geometry, and use
corner detection to generate waypoints [148]. Then, these points are connected in a

2.2. COMPUTER SIMULATION 29

Figure 2.6: Navigation meshes of different environments, as shown in Rahmani and
Pelechano [114].

graph, which can be searched to find navigation trajectories. This approach is very
flexible and can produce both surface and volumetric motion, but still suffers from
time and memory constraints, along with repetitive paths – agents always traverse
the same lines.

Navigation Mesh. The most popular approach for global agent navigation is
represented by navigation meshes. A navigation mesh is a graph of two-dimensional
convex polygons that defines which areas of an environment are traversable by
agents, as shown in Figure 2.6. Agents can navigate between any two points inside
a polygon in a straight line because it is convex and traversable. On the other hand,
pathfinding between different polygons in the navigation mesh can be done with
one of many graph search algorithms available, such as A* [31, 30]. The concept
of navigation mesh dates back to the field of robotics and autonomous navigation,
where it was necessary to create a representation of the environment that allowed
robots to traverse their surroundings. For this reason, much effort was put towards
dividing space into convex polygons that were directly traversable by agents - they
were first called meadow maps [10]. It was later adopted by the artificial intelligence
community, especially in games that needed agent navigation. The navigation mesh
approach evolved in three main directions: (i) improving graph search for path
finding [108, 113, 114], (ii) designing techniques for automatic navigation mesh

30 CHAPTER 2. BACKGROUND

generation [110, 15], and (iii) supporting dynamic navigation meshes [139].

Cellular Automata. Another approach for simulating pedestrian movement is
Cellular Automaton (CA) [16, 21, 17]. While agent-based techniques distribute the
decision effort among all the agents, cellular automaton uses a single centralized
entity that decides how to move every agent. This method can be compared to a
checkerboard where agents are pawns and the CA is the one moving them among
cells. Agents have very strict mechanics that allow them to move among cells, and
the CA can adopt two kinds of navigation strategies: (i) sequential where agents
are moved one at a time, and (ii) parallel where they can be moved all at once. The
first strategy is simpler but less realistic, while the second one needs to account
for conflicts – two agents cannot occupy the same cell. Since this is a rule-based
approach and does not require any advanced perception system from agents, it is
less resource intensive compared to the others.

This section provided an overview of the most popular approaches for global
navigation. However, they all only account for static environments and do not
consider the dynamic nature of other agents and obstacles. The next section will
discuss the techniques that were developed to address local navigation and obstacle
avoidance.

Local Obstacle Avoidance

This section gives an overview of the existing techniques for preventing agents from
colliding with obstacles, with a special focus on pedestrian motion. A summary of
the techniques is shown in Table 2.9.

Technique Description Sources

Steering
behaviors

Set of rules for agents to navigate complex envi-
ronments using simple forces and heuristics.

[116, 117,
118]

Velocity
Obstacles

Avoiding collisions in motion planning by pre-
dicting future velocities of other agents.

[47, 142]

Social Force Model A model for simulating pedestrian movement
based on physical and social forces.

[66]

Vision-based Steer-
ing

Uses low-resolution cameras and shaders to
detect and avoid collisions by adjusting angles
and speed.

[103]

Machine
Learning

Navigation is modeled as a reinforcement learn-
ing problem. Agents are rewarded for reaching a
goal, and punished for collisions.

[152, 50]

Table 2.9: Local navigation techniques.

2.2. COMPUTER SIMULATION 31

Steering Behaviors. One of the first efforts towards local navigation for realisti-
cally moving agents through their surroundings is called steering behaviors and is
described in the work of Reynolds. In his early work Reynolds proposed a way of
simulating the movements of agents, which were named boids, similar to schools of
fish, flocks of birds, or herds of other animals [116]. The author equipped each boid
with three basic components, namely collision avoidance of nearby agents, velocity
matching and flock centering to simulate the cohesion of group members. Each boid
has a simple perception model which allows it to sense its surroundings, mimicking
the imperfect senses of animals. With these simple components, the author was
able to quickly compute the velocity vector for each agent and convincingly simu-
late their movement. This line of work later evolved into avoidance of static and
dynamic obstacles. Reynolds describes several approaches to steering agents around
obstacles based on force field reflection, curb feeler deflection, or even silhouette
following [117]. Finally, Reynolds divided agent locomotion into three layers which
go from high to low level: action selection, steering and locomotion. The work
focused on the second layer, steering, simplifying the underlying locomotion layer
assuming a vehicle-like agent moved by a single velocity vector [118]. Reynolds led
the mathematical foundation for computing a velocity vector that simulates how
agents move during a plethora of behaviors such as: while seeking, fleeing, avoiding
obstacles, following a path or another agent.

Velocity Obstacles. A different technique for agent local navigation is by com-
puting velocity obstacles. A velocity obstacle (VO) is the set of all velocities of an
agent that will result in a collision with another entity, either static obstacles or
other moving agents [47]. One way to traverse the environment using this approach
is by first selecting a velocity vector that’s heading in the general goal direction.
After that, it is possible to adjust the velocity by selecting vectors that are not
in the set of the velocity obstacle field to avoid collisions. Many improvements
have been proposed to the basic approach such as Reciprocal Velocity Obstacles
(RVO) [142], which refines trajectories by considering the mutual responsiveness of
agents in collision avoidance. RVO acknowledges that other agents in the simulation
are also actively trying to prevent collisions, and it leverages this information to
generate more effective and coordinated trajectories through anticipatory behavior.

Social Force Model. A particular technique for simulating the motion of human-
like agents based on social factors was first described in the Social Force Model
[66] by Helbing and Molnár. This approach models agent navigation as if it was
under the influence of several competing forces. As such, the final velocity vector is
computed as follows: Fa = Fp + Fint where Fp is the agent’s preferred velocity to
reach its destination. Fint, on the other hand, is the interaction force consisting
of repulsive and attracting factors based on the psychological tendency to keep a
social distance between pedestrians, while also avoiding hitting walls, buildings,
and other obstacles.

Vision-based Steering. Another approach for local steering relies on synthetic
vision [103]. This technique consists of equipping each agent with a low-resolution

32 CHAPTER 2. BACKGROUND

camera, through which they can see a simplified model of their surrounding. Using
shaders, it is possible to analyze the pixels and determine whether they are on a
collision course with any obstacles. This computation is based on two factors: an
angle α and a time to collision ttc. Based on the outcome, the agents re-orient
themselves and decelerate, to avoid the collision.

Machine Learning. Finally, in recent times there have been efforts to perform
autonomous navigation through machine learning. Most approaches have been
employed in the context of robot navigation, such as [152] which presented an
autonomous navigation system capable of operating in densely populated environ-
ments and utilizing information of social groups. Group-Navi GAN incorporates
a deep neural network to track social groups and join the flow of a social group
to facilitate navigation. A collision avoidance layer ensures navigation safety. The
method generates socially compliant behaviors in line with other state-of-the-art
methods and is capable of navigating safely in a densely populated area, following
the crowd flows, to reach the goal. Some techniques, such as the work of Godoy
et al., have been employed for virtual agents. They present the Adaptive Learning
for Agent Navigation (ALAN) framework [50], for the decentralized navigation of
multiple agents in a crowded space. By leveraging techniques from machine learning
and game theory, agents using this framework dynamically adapt their motion
depending on local conditions in their current environment. This approach models
navigation as a reinforcement learning problem: agents explore an action space
made of preferred velocity vectors and are rewarded for reaching their goal, while
punished for colliding with obstacles.

To summarize, many different technical solutions have been used to make agents
traverse their surroundings. Research in this area has particularly pushed techniques
that balance movement accuracy with the cost of computation. Advancements in
navigation techniques have supported crowd simulation research, by making it easier
to model more complex and realistic movements. The produced models often rely
on a set of parameters that need to be calibrated to produce more realistic results.
The next section presents an overview of how different models can be calibrated to
produce results that are in line with real-world data.

2.2.5 Calibrating Model Parameters
Every simulation model aims to emulate a specific process. The way these processes
unfold is influenced by many factors that may be variable, or even unknown while
designing the model. For example, meteorological simulation models need to account
for air pressure, wind strength, and many other factors. For this reason, simulation
models are often made parametric to emulate various instances of the process,
without changing the entire model. Crowd simulation is no exception. As it tries to
emulate something as complex as human beings, models need to capture many of
their features through a range of parameters. Typical agent parameters in crowd
simulations include walking speed and acceleration, turning velocity, and field of
view. While all these parameters create an opportunity to represent individual

2.2. COMPUTER SIMULATION 33

differences or even different social contexts, they need to be specified accurately.
Thus, there is a clear need for a method that finds the best value for every parameter
of the simulation, for producing acceptable results. This section presents an overview
of the different techniques that have been used to calibrate model parameters and
is summarized in Table 2.10.

Technique Description Sources

Expert Opinion Calibrating parameters with expert opinion to
produce results close to reference data.

[53]

Search
Formulation

Calibration can be modeled as a search prob-
lem, using search algorithms to find a solu-
tion.

[11]

Simulated
Annealing

Simulated Annealing combines exploration
and exploitation to overcome local minima in
search formulations.

[81, 20, 7, 9]

Evolutionary Algo-
rithms

Find the optimal set of parameters for a
model by iteratively evolving a population
of candidate solutions.

[24]

Table 2.10: Parameter calibration techniques.

Expert Opinion. The most trivial way of calibrating the parameters of a sim-
ulation is to adjust them by comparison. With this approach, it is possible to
tune the parameters so that the simulation produces results as close to reference
data as possible, based on an expert opinion. Expert opinion can be valuable in
situations where data is scarce or unreliable, or where the model is being used to
make predictions about a complex system that is difficult to fully understand. In
such cases, expert opinion can provide additional insights and knowledge that can
be used to improve the model’s predictions. To calibrate a model using expert
opinion, the first step is to identify the key parameters that need to be adjusted.
These parameters will typically be based on the model’s input variables, such as
demographic data or environmental factors.

Once the key parameters have been identified, experts can be consulted to provide
their opinions on the values that should be assigned to these parameters. Expert
opinions can be gathered through various methods, such as surveys, interviews, or
focus groups and the model’s parameters can be adjusted accordingly. This method
is best applied on a small number of parameters [53].

Search Formulation. When the number of parameters to tune grows, more
sophisticated techniques are needed. One possibility consists of modeling calibration
as a search problem: the state space consists of all the possible outputs of the
simulation, and to go from one state to the other the system changes parameters
and runs the simulation to produce a new output. By defining a distance metric
that evaluates simulated against reference data, it is possible to define a goal state

34 CHAPTER 2. BACKGROUND

Figure 2.7: Parameter calibration applied to crowd data. (A) real-world scenario,
(B) extracted trajectories, (C) non-calibrated simulation, (D) calibrated simulation.
This image is adapted from the work of Wolinski et al. [149].

such that the metric has its global minimum value. It is then clear that this problem
can be treated with one of the many search algorithms [11]. Since the state space is
very wide, oftentimes greedy search algorithms are used to quickly get a solution.
These algorithms only accept actions that increase the estimation function – as
such they can get stuck in local minima.

Simulated Annealing. One approach which helps overcome local minima is to
combine exploitation of the most promising solutions, with exploration of the entire
problem state space. One such technique is Simulated Annealing (SA) [81, 20, 7, 9].
This approach has its roots in metallurgy where to strengthen materials they are
heated up and cooled down multiple times, at decreasing temperatures. This
procedure allows molecules to re-arrange themselves in better patterns – yielding a
stronger metal. When the temperature is very high, molecules are freer to change
the configuration, while at lower temperatures they are more constrained by physics.
The same concept is applied in SA for optimization problems. Starting with a
simulated high temperature the algorithm is willing to accept configurations that
are worse than the current one – that way it can explore the state space and find
the most promising areas. The temperature is then incrementally lowered so that
the algorithm converges to a near-optimal configuration.

Evolutionary Algorithms. One additional approach is represented by Evolu-
tionary Algorithms. These can be used to calibrate the parameters of a model by
iteratively searching through the parameter space in order to find the optimal set of

2.2. COMPUTER SIMULATION 35

parameters. The algorithm begins by generating an initial population of candidate
solutions, which are evaluated for fitness using an objective function. Subsequently, a
selection operation is performed to select a subset of the population for reproduction.
Variation operators such as mutation and crossover are then applied to the selected
individuals to generate a new population of candidate solutions. This process is
repeated until convergence criteria are met, at which point the best solution found
is output. By iteratively evolving the population through this process, evolutionary
algorithms can effectively search the parameter space for good fits to the available
data.

An example is the work of Jin and Bhanu which discusses how to optimize a
navigation algorithm (RVO) so that it gets as close to reality as possible. The
authors employ a genetic algorithm to find the set of parameters that makes RVO
best resemble the trajectories of a real data set. To do this they need to use a
metric that measures the similarity between two trajectories called Edit Distance
Metric on Real Sequence (EDR) [24]. The dataset was divided into training and
test sets. Applying a genetic algorithm with EDR as a fitness function to data
points of the training set, the authors were able to systematically mutate RVO
parameters - one at a time with the others fixed - and obtain the best possible set.
Experiments conducted on the test set show that this calibration procedure greatly
helps to make RVO resemble real-world trajectories.

From this overview of calibration techniques for simulation models, it is clear that
many approaches exist. It is worth mentioning that there have been efforts towards
unifying many of these approaches. One example is the work of Wolinski et al. that
created a framework capable of optimizing the parameters of a crowd simulation
using many different techniques [149]. The results are very promising, as the tuned
simulation is much closer to reference data compared to the non-calibrated one as
shown in Figure 2.7. Nevertheless, calibration is commonly a rather overlooked step
in crowd simulation design – even if it can greatly improve the model’s accuracy.
This is partly caused by the difficulty of choosing the right calibration technique,
and the overhead caused by implementing it into a wide variety of underlying
systems. There may therefore be an opportunity here to provide a better-defined
and more system-independent way to access a range of useful calibration techniques.

Once the parameters of a simulation have been calibrated, it is important to
evaluate how the simulation captures the behavior of the real world. To this end,
several approaches can be used to evaluate the accuracy of a simulation with respect
to real-world data. The next section will discuss some of these approaches, and
will also provide an overview of the most common metrics used to evaluate crowd
simulation.

2.2.6 Evaluating Simulation Output
With increasing focus on the realism offered by crowd simulation, there is a growing
need to validate them against real-world data. Crowd simulation evaluation can be
divided into two main approaches which are Macroscopic and Microscopic evaluation.
The first one treats the crowd as a whole entity and estimates metrics such as

36 CHAPTER 2. BACKGROUND

mean speed, densities, collision or path length. On the other hand Microscopic
evaluation reasons in terms of individual agents and/or trajectories, and estimates
the similarity between simulated and reference data points. These techniques are
summarized in Table 2.11.

Technique T Description Sources

Edit Distance Metric S Calculates the similarity of two
trajectories by computing the cost
of turning one set of points into
the other.

[24]

Entropy Metric M Objectively evaluates the similarity
between simulated and reference
data by measuring the amount
of information missing from the
simulation.

[58]

Trending Paths M Unsupervised clustering is used
to learn sets of trending paths
from reference data to objectively
quantify crowd simulator realism.

[146]

Fundamental Dia-
gram and ANCOVA

L Macroscopic metrics used to com-
pare pedestrian velocities and
crowd densities of simulated mo-
tion with real data.

[127, 126, 156,
150]

Table 2.11: Simulation evaluation techniques. The “T” column indicates the type:
S for small-scale or Microscopic, M for medium-scale or Mesoscopic, and L for
large-scale or Macroscopic.

Entropy Metric. Guy et al. propose a way of objectively evaluating the similarity
between simulated motion and reference data [58]. The metric is the entropy of
the distribution M of errors between crowd states predicted by a simulator f̂ and
real ones extracted from reference data. The authors compute the Entropy Metric
using a two-phase process. Firstly, they estimate the crowd states X from the given
validation data. Secondly, for each transition between inferred crowd states, from
Xk to Xk+1, the distribution of prediction errors mk = Xk+1 − ˆf(Xk) is computed
using a maximum likelihood estimator. The collection of all errors mk over all
timesteps is denoted as M . To compute the entropy of the distribution they use its
variance. The entropy of the distribution M measures the amount of information
that is missing from the simulator f̂ that would be needed to completely model
the function f and capture true crowd motion. Figure 2.8 shows how the entropy
metric can be used to compare simulated and reference data. In particular, the
figure shows a comparison between a rendering of real-world crowd data (a), and
stills from three different simulation algorithms applied to the same scenario.

2.2. COMPUTER SIMULATION 37

Figure 2.8: Entropy Metric approach for measuring the similarity between simulated
and real-world data from [58]. (A) Real-world Data, (B) Entropy 4.7, (C) Entropy
3.8, (D) Entropy 2.7.

Edit Distance Metric. Another approach that has its background in Natural
Language Processing (NLP), computes the similarity between two data points
employing the Edit Distance on Real Sequence (EDR) metric. This metric is
a distance function introduced by [24] and was originally used to compute the
similarity between strings of characters. Given strings R and S, the Edit Distance
on Real sequence (EDR) between them is the number of insert, delete, or replace
operations that are needed to change R into S. In practical terms, navigation
trajectories can be thought of as collections of points, instead of characters that
make up strings. Every two given points of the trajectories match if their distance is
below a certain threshold. With this definition, the cost of turning each point of R
into its respective in S can be recursively computed – thus, ultimately, the similarity
between the two trajectories can be estimated. According to Chen et al., EDR is a
metric that tackles many problems of previous distance functions: it is resilient to
noise and outliers, can handle local time shifting, and accounts for lengths of gaps
in sub-trajectories.

Trending Paths. One approach that tries to strike a balance between low-level
features such as individual trajectories, and global ones such as densities and exit

38 CHAPTER 2. BACKGROUND

rates, is presented in the work of Wang et al. [146]. The authors use an unsupervised
clustering method to learn a set of trending paths from reference data. These trending
paths carry more general information regarding how pedestrians traverse the space,
compared to single trajectories. It is then possible to objectively quantify the realism
of a crowd simulator by comparing trending patterns of simulated trajectories with
the ones extracted from reference data.

Fundamental Diagram. One macroscopic metric studies the relation between
pedestrian velocities and crowd densities, and is reported in the Fundamental Dia-
gram [127, 126, 156, 150]. This diagram asserts that individual pedestrian velocities
are inversely proportional to crowd density – crowd velocity linearly decreases as
density increases. This relation can be trivially compared with velocities generated
by crowd simulators to assess whether it holds for virtual agents. Furthermore, this
metric can be more formally validated through the analysis of covariance (ANCOVA)
test [97]. This test establishes the degree of similarity between the slopes of the
fundamental diagram and the simulated motion. In a similar macroscopic evaluation
approach, the work of Cassol et al. [22] strives to assess whether the output of a
crowd simulation meets some informed predictions such as (i) counter flow should
impact negatively on the evacuation time, (ii) halving available exits should double
the evacuation time, and (iii) agents should follow exit routes.

This overview highlights that many different evaluation techniques are available
for comparing crowd simulation outputs to real-world data. On the one hand, this
plethora of approaches is advantageous because it gives simulation designers a wide
choice to pick from when evaluating their models. But on the other hand, if every
researcher uses a different evaluation technique, it is hard to fairly compare the
results. It might therefore be beneficial for the field to have a common evaluation
platform where different simulation models can be compared using the same metric.

This is among the reasons that motivated the effort to create frameworks capable
of unifying the various approaches in which crowd simulation is performed. The
following section discusses some of these attempts.

2.3 Attempts to Unify
Given the fact that multiple research fields are contributing to the progression
of crowd simulation, and that employing a “divide and conquer” strategy can
render fruitful outcomes, it is unsurprising that the field is becoming increasingly
fragmented. As concluded by Kleinmeier et al., this divergence is likely attributable
to the various scientific backgrounds and objectives of the respective research groups.
The authors explain that crowd simulation is a multifaceted area of study that has
been explored by multiple scientific disciplines [82]. Each field may have its own
unique set of procedures and practices for exploring human movement, and at times
the same terminology can be used to denote disparate concepts. Nevertheless, the
ultimate objective is to ensure the most advantageous outcome, hence the notion of

2.3. ATTEMPTS TO UNIFY 39

unification. This section discusses some of the attempts to unify the field of crowd
simulation, which are summarized in Table 2.12.

Framework Description Sources

OpenSteer OpenSteer is a library for creating steering behav-
iors for autonomous agents.

[115]

ADAPT Extensible platform for animating crowds supporting
locomotion, gaze tracking, reaching, and reaction to
external forces.

[130]

JuPedSim C++ simulation framework for simulating and ana-
lyzing pedestrian movement with a locomotion sys-
tem, collision avoidance, route choice, and reporting
tools.

[145]

Steer Suite framework for evaluating steering algorithms with
visualization and benchmarking tools.

[131]

Vadere Framework for unifying crowd simulation, with 7
locomotion models, GUI, and evaluation Python
scripts.

[82]

Menge Crowd simulation framework decoupling the prob-
lem into goal selection, plan computation, and plan
adaptation components.

[32]

Table 2.12: Crowd simulation frameworks.

2.3.1 Crowd Simulation Frameworks
OpenSteer. OpenSteer [115] is an open-source library of components used to
create steering behaviors for autonomous agents in multi-agent simulations. Com-
patible with Linux, Windows, and Mac OS X, the toolkit consists of abstract
mobile agents called vehicles, sample code, and simple steering behaviors which
can be combined to produce more complex behavior. OpenSteer also provides
an interactive application, OpenSteerDemo, based on a plug-in architecture and
written in C++ with OpenGL graphics. This application can be used to visualize,
annotate, and debug code, run simulations, and create novel steering behaviors, as
well as control simulation time and view and track behavior via camera capabilities.
OpenSteerDemo also has various scenarios such as “capture the flag”, “multiple
pursuit”, “boids”, and “waypoint following”, and can be used to simulate human
pedestrians. However, the framework lacks certain capabilities such as high-level
behaviors, global path planning, and events, and has no external specification
mechanism. As a result, simulation scenarios must be hard-coded into the plug-in.

ADAPT. ADAPT [130] is an extensible, scalable platform for animating crowds
of autonomous virtual characters in sophisticated 3D virtual worlds. It is designed to
enable the seamless integration of modular character controllers, such as data-driven

40 CHAPTER 2. BACKGROUND

Figure 2.9: This figure, adapted from [32], shows the main components of the Menge
crowd simulation framework. The goal selection component decides a destination
for each agent. Then, plan computation generates a path to reach the goal. Finally,
the plan adaptation component modifies the path in case of obstacles. During this
process, the simulator can perceive the environment through visibility and proximity
queries.

locomotion, procedural reaching, gesturing and physical reactions, with integrated
navigation and event-centric behavior authoring for multi-actor interactions. The
platform uses a system for blending arbitrary poses in a user-authorable data flow
pipeline, allowing designers to choose between techniques and leverage established
systems already produced by the character animation research community. Fur-
thermore, ADAPT provides an interface for path-finding and steering, as well
as a comprehensive behavior authoring structure for authoring both individual
decision-making and complex interactions between groups of characters.

The system is based on a hierarchy of abstractions called the ADAPT Character
Stack, which is split into four main tiers: Behavior, Actor, Body, and Animation.
The Behavior layer contains commands comprising multiple sequential calls to the
Actor layer and abstracts commands in the Body layer, keeping track of the duration

2.3. ATTEMPTS TO UNIFY 41

of a task. The Body layer converts abstract commands into messages sent to the
navigation or animation system, and the Animation layer provides the lowest-level
external access to the character’s animation.

The platform also supports parameterized behavior trees, that allow data to
be managed and transmitted within their hierarchical structure, for controlling
multiple characters in an environment. These are used to author events that take
one or more characters as parameters and temporarily grant exclusive control over
those participants. Smart objects are also used to allow characters to interact with
the environment and are useful for a wide array of tasks.

ADAPT is capable of performing tasks such as locomotion, gaze tracking,
reaching and reaction to external forces and can support approximately 150 agents
with full fidelity at interactive frame rates. The platform allows researchers to
rapidly and visually iterate on character controller designs, and employ features
from other packages to provide the functionality they lack without the need to
deeply integrate or reinvent known techniques. At the same time, the framework
does not allow convenient model comparisons: the user must manually change the
code to switch between different models and compile two different binaries. Overall,
ADAPT is best suited for the focused development of the final stages of crowd
simulation such as motion synthesis.

JuPedSim. JuPedSim [145] is an open-source, C++ simulation framework that
can be used to simulate and analyze the movement of pedestrians in a given
geometry. The framework consists of three modules, namely, a simulation module,
a visualization module and a reporting module. The simulation module includes
two operational-level models (locomotion system and collision avoidance) and three
tactical-level models (route choice, and short-term decisions). The reporting tool
integrates four measurement methods, which allows for the analysis of densities,
velocities, flows and profiles of variables in a given geometry. The visualization
module reads simulation results and allows the user to interact with the results
in an animation, or to record high-resolution videos. JuPedSim is also supported
by a suite of verification and validation tests, offers a wide range of features, and
is continually being developed with plans for a graphical user interface, import
capabilities for various CAD formats, and connection of the pedestrian simulation
with a fire simulator. The simulator is based on the generalized centrifugal-force
model and 3D navigation mesh-like algorithm and supports dynamic environments
and the concept of pedestrian knowledge and how it moves through the crowd.
JuPedSim includes tools for analyzing the results and has an extensive XML-based
specification language for flexible specification. However, due to its tightly coupled
components, it lacks a plug-in architecture which limits the ability to perform
focused development and efficient dissemination of new models.

Steer Suite. SteerSuite [131] is an open-source framework that aims to encourage
community participation in the development and evaluation of steering behaviors.
It includes a flexible test case format that is designed to be flexible yet easy to use,
allowing users to create and validate their test cases; a library to automatically set
up initial conditions, as well as more elaborate goal specifications in the test cases;

42 CHAPTER 2. BACKGROUND

and a novel steering algorithm called PPR (Plan, Predict and React), which is a
novel rule-based pedestrian steering algorithm that combines three aspects into a
single steering decision.

The software allows users to visualize the simulation, draw annotations, and step
through the simulation manually, making it easier to debug and analyze algorithms
in the field of agent steering. SteerSuite also provides benchmark/metrics reports
and recordings of the simulations, as well as a library that can read the test cases and
automatically set up all initial conditions. Additionally, the benchmarking process
is generalized, allowing users to experiment with their benchmark techniques and
use metrics to debug or analyze a simulation. Overall, despite SteerSuite being a
useful tool for evaluating and debugging agent steering algorithms and encouraging
community participation in the field, it does not provide support for high-level
behavior, and the XML specification is not extensible, meaning that referencing
novel components requires modifications to the core application.

Vadere. Vadere [82] is an open-source simulation framework that enables the
comparison of implementations of existing and new locomotion models. It offers
a lightweight user interface and pre-implemented versions of the most widely
used models. The framework offers modern algorithms and data structures, a
graphical user interface (GUI), Python scripts to compare simulation outputs, and
a command line interface to run multiple simulations. It was designed keeping
interdisciplinary collaboration in mind and focusing on usability, thus, Vadere
is open-source and allows other researchers to use and extend the code to fit
their requirements. The simulation process involves three main steps: creating
an input file, running the simulation, and analyzing the simulation results. The
GUI has multiple features, such as providing an overview of the scenario files and
the corresponding simulation outputs and offering a drawing program to define
the topography of the environment. Vadere currently supports seven locomotion
models, including the behavioral heuristics model, a simple bio-mechanics model,
the gradient navigation model, the optimal steps model, an optimal velocity model,
an implementation of Reynolds’ steering behaviors, and an implementation of the
social force model. The framework uses the Model View Controller (MVC) pattern
to separate responsibilities for the three modules: (i) the Model represents the
simulation state, (ii) the Controller contains the logic to change objects of the model
layer, and (iii) the view visualizes the current simulation state. This, along with
the definition of a common interface for defining novel locomotion models, makes
it easy to extend the framework with new features. Finally, to ensure the quality
of the framework, Vadere is tested using the Java unit testing framework JUnit,
and its outputs are compared against 16 scenarios based on real-world experiments.
However, Vadere uses a simplified representation of the environment that may
not capture all the nuances of real-world environments. For example, it does not
support terrain height variations or complex building geometries. Moreover, while
the framework focuses on the comparison of models, it does not provide a way to
combine different ones.

2.3. ATTEMPTS TO UNIFY 43

Menge. Another notable example is a crowd simulation framework called Menge
[32]. The framework, as shown in Figure 2.9 aims at separating crowd simulation
into decoupled sub-problems, whose solutions can then be more easily reused by
other members of the community. First, goal selection involves determining what
each agent wants to achieve based on several factors such as psychology and world
knowledge, this is achieved through a Behavioral Finite State Machine (BFSM).
Second, plan computation means devising a sequence of actions for reaching the
chosen goal, by employing several techniques such as Navmesh, road maps, and
velocity fields-based approaches. Finally, there is plan adaptation which adjusts
the previously computed plan to account for dynamic phenomena, based on one of
several available pedestrian models. These abstractions allow researchers to focus
on a single aspect of the simulation model, delegating the complexity overhead of
the remaining components to the framework itself. It then becomes possible to
compare simulation models at a more granular level, since any of the components
can be specifically matched against its alternative.

Although excelling in the decomposition of the crowd simulation process, and
providing integrated bespoke solutions for each subcomponent, Menge does not
provide any built-in feature to evaluate simulation outputs. This hinders the ability
to perform meaningful comparisons between components. Moreover, the framework
lacks support for combining high-level behaviors, which is essential for developing
holistic models of human social behavior.

This section has presented an overview of the most relevant crowd simulation
frameworks. The result has been summarized in Table 2.13 which shows the
strengths and weaknesses of each framework. Although there has been a prolific
effort that led to the development of several solutions, these frameworks have some
important limitations. Most of them do not offer any built-in solutions to calibrate
the model parameters, nor to evaluate simulation outputs. This makes it difficult
to perform meaningful comparisons between components. Even more importantly,
none of them support the combination of high-level behaviors, which is a required
feature of a comprehensive model of human social behavior. For example, comparing
or combining navigation mesh-based and steering behavior-based models of group
formation is challenging due to different underlying paradigms, parameters, and
variables. For a more detailed discussion of this example, refer to Section 2.5. Thus,
it is important to develop a framework that addresses these limitations, and that
can be used as a basis for future research in the field of crowd simulation.

Despite the proposed solutions, crowd simulation remains a complex endeavor.
For this reason, the framework should be accessible enough to be used by researchers
with different backgrounds. To this end, there have been several efforts to develop
tools that can simplify the authoring of crowd simulations to foster collaboration
and the development of new models. The next section presents some of these tools.

44 CHAPTER 2. BACKGROUND

Fr
am

ew
or

k
M

od
ul

ar
Ex

te
ns

ib
le

Ev
al

ua
tio

n
B

eh
av

io
r

C
om

bi
na

tio
n

O
ffe

rs
vi

su
al

iz
at

io
n

C
on

ve
ni

en
t

A
ut

ho
rin

g

O
pe

nS
te

er
[1

15
]

Li
m

ite
d

Li
m

ite
d

Li
m

ite
d

Li
m

ite
d

Li
m

ite
d

U
ns

up
po

rt
ed

A
D

A
PT

[1
30

]
Su

pp
or

te
d

Li
m

ite
d

U
ns

up
po

rt
ed

Li
m

ite
d

Li
m

ite
d

Su
pp

or
te

d

Ju
Pe

dS
im

[1
45

]
Li

m
ite

d
Li

m
ite

d
Su

pp
or

te
d

U
ns

up
po

rt
ed

Li
m

ite
d

Li
m

ite
d

St
ee

r
Su

ite
[1

31
]

Li
m

ite
d

Li
m

ite
d

Su
pp

or
te

d
U

ns
up

po
rt

ed
Li

m
ite

d
Li

m
ite

d

Va
de

re
[8

2]
Su

pp
or

te
d

Su
pp

or
te

d
Su

pp
or

te
d

U
ns

up
po

rt
ed

Li
m

ite
d

Su
pp

or
te

d

M
en

ge
[3

2]
Su

pp
or

te
d

Su
pp

or
te

d
U

ns
up

po
rt

ed
U

ns
up

po
rt

ed
Li

m
ite

d
Li

m
ite

d

Ta
bl

e
2.

13
:

St
re

ng
th

s
an

d
w

ea
kn

es
se

s
of

th
e

cr
ow

d
sim

ul
at

io
n

fr
am

ew
or

ks
su

rv
ey

ed
fr

om
th

e
lit

er
at

ur
e.

2.4. ATTEMPTS TO SIMPLIFY 45

2.4 Attempts to Simplify
Authoring crowd simulations is a complex task, as it involves dealing with the
multitude of components mentioned before. In particular, they can be classified into
(i) high-level behaviors, which describe the agents’ desires and their goals; (ii) path
planning, which translates the high-level behaviors into a sequence of actions for
reaching the desired goal; (iii) local movement, which accounts for the interactions
with dynamic parts of the environment and other agents; and (iv) visualization,
which introduces variety into crowds both at the static appearance level of the
agents and their animations while moving. This classification is similar to the one
proposed by Lemonari et al., who thoroughly reviews the authorable components
of crowd simulations and explains the most relevant approaches for each of them,
along with the tools available in the literature [84].

Given the complexity of the task, several attempts have been made to simplify the
authoring process, which are summarized in Table 2.14. These solutions often revolve
around graphical user interfaces (GUIs) that allow augmenting the environment
with additional information influencing agents’ behavior without having to directly
deal with the underlying implementation details. This section reviews the most
relevant approaches in this direction and argues that (heat) map painting is a
particularly promising solution for authoring behaviors in crowd simulations.

Tool Description Sources

Crowdbrush Paints various traits of agents in a crowd simu-
lation, inspired by image manipulation tools.

[141]

Semantically Aug-
mented Nav. Graphs

Tool for annotating navigation graphs with
semantic labels to enable more intuitive and
varied agent behavior.

[154]

Pedestrian
Environment
Designer

Using bitmap layers to define entrances, exits,
collisions, attractions and avoidance.

[93]

Visual Sketching Sketching for controlling agent spawning, navi-
gation, barriers, and flow paths.

[54]

Spatial
Situations

Situations can be defined through a painting in-
terface, and agents respond with a probability
distribution.

[133]

Map Formations Set up formations by drawing them on a map,
generating the necessary waypoints for the
agents to follow.

[8, 57]

Table 2.14: Crowd simulation Authoring Tools.

46 CHAPTER 2. BACKGROUND

Figure 2.10: Example of how several maps can be painted to affect various aspects of
the crowd simulation. In this case, the map defines the agents’ spawn and despawn
locations, and impacts the way they move and interact with the environment and
other agents. Figure from [93].

Crowdbrush. Ulicny et al. [141] employ a brush metaphor to allow users to
paint various traits of the agents in a crowd simulation scenario. The authors take
inspiration from the image manipulation process, extending changes performed in
2D space to the 3D environment and characters. The system includes several brush
functions including the ability to paint the agents’ positions and orientations, their
appearance and animations, and (to some extent) their behavior – by generating
events that affect behavioral rules. This approach fosters simplicity and intuitiveness
in the authoring process of simple crowd simulations and enables novice users to
easily fill environments with multiple animated agents without having to deal with
complex simulation models.

Semantically Augmented Navigation Graph. The work of Yersin et al. [154]
focuses on a GUI tool that allows users to annotate a navigation graph with
semantical labels (such as park, hotel, station, etc...) so that the goals can be defined
more intuitively. Additionally, this results in more varied and realistic behavior,
since the agents can choose their destination based on their current location and
the available options fitting the desired goal’s category, and are not forced to follow
a predefined path.

Pedestrian Environment Designer. In the work of McIlveen et al. [93], the
authors propose a novel approach for authoring high-level behaviors by offering a
map sketching graphical interface, shown in Figure 2.10, allowing users to define

2.4. ATTEMPTS TO SIMPLIFY 47

various layers with different functions: (i) the Entrance/Exit layer determines where
the agents spawn and where they despawn; (ii) the Collision layer defines the
traversable parts of the environment; (iii) the Attraction layer attracts pedestrians
to move through the painted areas while moving towards their exit; and (iv) the
Avoidance layer discourages movement through their specified areas. These layers
are bitmaps that can be painted using tools similar to those found in common
raster image editing software. After a collection of layers has been produced, a
compilation process is used that converts the layers into an XML model input
format for FLAME GPU, which then simulates the movement of the agents through
force vector fields and the social force model.

Visual Sketching. Gonzalez and Maddock [54] propose a sketching interface
that allows users to augment force-field-based navigation systems with additional
information which can be used to influence the behavior of the agents. The system
allows sketching three different elements: (i) spawn and exit locations controlling
the instantiation of agents; (ii) barriers limiting the movement of the agents; and
(iii) flow paths which steer the agents towards the desired direction. These various
elements are then compiled into a force field map used for navigating the agents
through the environment. Similarly, Colas et al. [28] explore a solution for authoring
high-level behaviors by allowing users to sketch the desired flow of agents through
the environment based on a target object, a guide curve, and a zero area. These
three elements are then employed to generate an interaction field, which is a vector
field that guides the agents’ movement.

Spatial Situations. Sung et al. [133] presented a crowd simulation system wherein
the behavior of pedestrians is impacted by situations associated with the environ-
ment. This system allows the user to define these situations by drawing regions on
the environment through a painting interface. The responses of the agents to these
situations are implemented through the sampling of a probability distribution.

Map Formations. Graphical techniques can be applied to more specific behaviors
such as formations. Allen et al., Gu and Deng propose a graphical interface for
authoring formations, where the user can draw the desired formation on a map and
the system will generate the corresponding waypoints for the agents to follow [8, 57].
This allows the user to set up the desired formation without having to worry about
the technical details.

This overview of the existing authoring approaches for crowd simulation has
focused on the use of graphical interfaces for authoring agent behaviors. In particular,
the use of map painting techniques is a promising solution for augmenting the
environment with additional information that can be used to influence the behavior
of the agents at various steps of the simulation pipeline.

At the same time, all the approaches presented in this section are limited in
their scope, as they focus on low-level aspects of the simulation pipeline, such as the
agents’ spawn locations and goal destinations and their interactions with obstacles
in the environment. While these factors play a significant role, they are more akin

48 CHAPTER 2. BACKGROUND

to directing interfaces that enable the user to manipulate the agents’ movements
similar to a puppeteer, rather than authoring interfaces that allow modeling the
desired behavior of the agents.

Moreover, as concluded by Lemonari et al. [84], there is no unified framework
for authoring the desired behavior of crowds in simulations due to the complexity
of the pipeline, a massive set of parameters to control, and the assumptions of
how crowd simulation is achieved. The authors highlight the importance of a more
unified framework that can integrate all components and facilitate all levels of the
simulation at once – with particular focus being put on high-level behaviors as they
influence the rest of the pipeline.

The use of heatmaps proposed in this dissertation, and introduced in Chapter 3, is
a natural extension of this approach, as it allows the user to influence agents’ behavior
by generating heatmaps containing spatial information about the environment that
can be used to steer the agents’ movement. Additionally, the approach is integrated
with state-of-the-art crowd simulation systems: Menge for agent behavior modeling
and simulation, and Unity for visualization. This allows leveraging heatmaps at
various stages of the simulation pipeline including influencing high-level behaviors
with dynamic goal selection; steering the agents’ movement through the environment;
and comparing the simulation output in the form of heatmaps with the real-world
counterpart.

To foster the adoption of this approach, the authoring process must be intuitive
and easy to use. For this reason, it is fundamental to create a graphical interface
that allows users to easily generate heatmaps, modify and combine them, and use
them to influence the behavior of the agents.

2.5 Discussion
Researchers have successfully employed a range of social behavior theories, studied
in psychology and sociology, for generating and animating virtual human behavior
in crowd simulations. Moreover, several navigation algorithms have been proposed
that allow virtual humans to traverse space in increasingly realistic ways. Recent
advancements in simulation techniques have produced ways of objectively calibrating
parameters, and validating simulation models – thus pushing these simulations
closer and closer to reality. Finally, to manage the complexity of crowd simulations,
researchers have developed a variety of authoring tools that allow users to easily
create and modify simulations. The foundation of this field, therefore, rests on
several sub-fields, each contributing an approach and a technical solution.

On the one hand, this “divide and conquer” strategy has been useful in letting
researchers focus on isolated and smaller problems, but on the other hand, it has
led to fragmentation in the field. Crowd simulation models are developed relying on
a specific selection of components from the aforementioned sub-fields. This makes
it difficult to compare and even more challenging to combine different models, as
they are based on different assumptions, use different techniques, rely on different
components, and produce different outputs.

For example, a model of group formation that has been developed by relying on
the global path planning from a navigation mesh cannot easily be combined with one

2.5. DISCUSSION 49

built by extending steering behaviors. The first is built on a navigation mesh which
is a system of interconnected polygons that allows a character to move from one
polygon to the next. This type of system bases its navigation on a predetermined
path and does not allow for any deviation or improvisation. The second, on the
other hand, is built on steering behaviors which rely on a character’s ability to
sense their environment and make decisions based on their perceived obstacles and
goals. This type of system allows for more improvisation and flexibility in the
character’s movements. Combining the two simulations would require combining
the two underlying paradigms, which can be difficult because they rely on different
sets of parameters and variables. Furthermore, it is also challenging to predict
how the characters would interact with each other or the environment when using
a combination of the two principles. As a result, it is not easy to combine the
two models. Moreover, since each model relies on different sets of parameters and
variables, it is difficult to fairly compare the two models’ outputs. The differences
in results can be attributed to the chosen parameter sets, rather than to the models
themselves.

Thus, fragmentation has led to a need for a framework that supports designing
and implementing crowd simulation models in a standard way so that the resulting
models are comparable and can be combined. This framework should be able to
integrate different models and approaches in a unified system, allowing for the
efficient development, evaluation, and integration of different crowd simulation
models. Furthermore, such a framework should be able to provide a platform for
the comparison of different models and techniques, as well as for the integration
of existing models into a unified system. This would allow for the development of
more complex and realistic crowd simulations, as well as for the easy comparison
and combination of different models.

To this end, there have been several attempts to create frameworks that allow
for the decomposition of the crowd simulation field into smaller sub-problems,
such as Menge [32], which provides a generic architecture for the simulation of
pedestrian dynamics. However, these frameworks cannot still combine several
high-level social behavior models, which is essential for designing agents with more
holistic social intelligence. Moreover, introducing graphical user interfaces and
map-based encoding of environmental and behavioral information can enhance user
experience and facilitate the design and testing of various scenarios. Ultimately,
further research is needed to create a unified system that supports the development
of more complex and realistic models, while allowing for easy comparison and
integration of different approaches.

50 CHAPTER 2. BACKGROUND

Chapter 3

Theoretical Framework

3.1 What Influences Human Navigation
When humans walk around an environment, they are guided by several stimuli. For
example, suppose a tourist is exploring a place they have never seen before. In that
case, they might prefer the most visible locations or points of interest, and - at the
same time - they might want to avoid overcrowded attractions. On the other hand,
a resident of a city who is familiar with that particular environment might associate
certain places with specific memories or sensations, which can either attract or
repulse them depending on whether they are positive or negative.

Several stimuli that influence human navigation are related to the social sphere.
One particularly important example is the influence of group dynamics on the
way people move around an environment since, most of the time, people walk in
groups [97]. Group behavior can influence navigation while walking by causing
people to be more likely to follow and stay with the group instead of veering off
and taking a different route. For example, if a group of people is walking to their
destination together, they may all travel in the same direction and avoid any detours
or shortcuts that could be taken. Additionally, they may be more likely to make
the same decisions when it comes to crossing the street or waiting for a light to
change. An advantage of modeling group behavior in crowd simulation is that
it allows for a better understanding of how people interact and behave in larger
groups. This can be useful for analyzing crowd dynamics in public spaces, such
as public transportation, stadiums, and malls, as well as for studying the impact
of policy changes on crowd behavior. Additionally, modeling group behavior can
provide insights into how individuals make decisions and interact with each other
in different environments.

Thus, each time a human being takes a step, they solve a challenging decision
task that involves the complex evaluation of both their mental state and external
inputs, as shown in Figure 3.1.

Chapter 2 highlighted how several models have been proposed in the literature
to address many of these aspects of human behavior. Particularly, Section 2.5 drew
attention to the challenges of combining different human behaviors into a unified

51

52 CHAPTER 3. THEORETICAL FRAMEWORK

Figure 3.1: Example of internal and external stimuli which can influence the way
that people walk around the environment.

model. This chapter will argue that a particular subset of human behavior theories
can be modeled with graphical data structures called heatmaps and that those can
be blended to create a simulation of human reasoning that considers stimuli from
several sources simultaneously.

3.2 Modeling Behaviors with Heatmaps
A heatmap is a data visualization technique showing a phenomenon’s magnitude
as color in two dimensions. Heatmaps often serve to shade matrices so that larger
values yield colors that differ from those associated with smaller weights, as shown
in Figure 3.2. Usually, the colors differ in their hue value or intensity (brightness),
but they can also depend on a gradient between different colors.

By subdividing the environment in a grid-like fashion, it is possible to create a

3.2. MODELING BEHAVIORS WITH HEATMAPS 53

0 0,15 0,3 0,5 0 0,15 0,3 0,5 0 0,15 0,3 0,5

0,15 0,3 0,5 0,65 0,15 0,3 0,5 0,65 0,15 0,3 0,5 0,65

0,3 0,5 0,65 0,8 0,3 0,5 0,65 0,8 0,3 0,5 0,65 0,8

0,5 0,65 0,8 1 0,5 0,65 0,8 1 0,5 0,65 0,8 1

A B C

Figure 3.2: (A) Example of a matrix with ascending values from top left to bottom
right, (B) the same matrix shaded as a gray-scale heatmap, (C) the matrix shaded
according to a gradient going from blue to yellow.

matrix holding arbitrary data in its cells. For example, it is possible to create a
matrix whose values represent the height of the buildings in the environment, as
shown in Figure 3.4. Then, it is possible to encode the matrix as a heatmap by
assigning a color to each value contained in its cells, thus making the visualization
more effective than simply reporting the raw values.

Heatmaps are highly effective tools for designers and other decision-makers, as
they provide a visual representation of data that can emphasize patterns, trends,
and correlations. By presenting data in this accessible format, they can assist
in identifying areas that warrant further investigation and offer insights into the
rationale behind specific choices. Furthermore, by enabling decision-makers to
rapidly and effortlessly discern patterns, trends, and correlations, heatmaps facilitate
more evidence-based decisions rather than those solely reliant on intuition [39].

Figure 3.3: Representation of the
weight paint process in Blender
involves painting each face of the
mesh with a color representing a
bone’s influence.

The opposite process is also possible: color
intensity or gradients are used to author data
mappings, which are then expressed as textures
used for various purposes. One notable exam-
ple is in the field of skeletal animation and rig-
ging [95]. In that context, weight painting is
commonly used to associate a character’s mesh
geometry with the underlying bone structure.
In that case, 3D artists use digital brushes to
paint each face of the mesh with a particular
color, corresponding to a certain weight repre-
senting the magnitude of the bone’s influence
on those faces. The result, illustrated in Figure
3.3, is a heatmap that wraps around the char-
acter’s mesh and provides an easy-to-interpret
visualization. Moreover, this is a convenient way
of assigning weights: different bones can share
their influence on the same geometry by just
combining the heatmaps.

Often, when the heatmap is superimposed
on a geographical location, it is called a spa-

54 CHAPTER 3. THEORETICAL FRAMEWORK

tial heatmap. Then, the information held in the
heatmap can be used in any model of human be-
havior. For example, while simulating a tourist
visiting a city, it might be helpful to know which building is the tallest - because
they might want to go there to have a good view.

Figure 3.4: Example of how a spatial heatmap can be used to represent features
of the environment, such as building height. Here, cells that correspond to tall
buildings have higher values, while the ones covering the ground have lower ones.
Then they were shaded according to a grayscale gradient going from black to white.

At the same time, spatial information does not only pertain to physical data
such as height. Several theories in the literature propose that humans associate
all sorts of characterization with the space surrounding them - including social
ones. For example, Scheflen [123] proposed the existence of unconscious rules about
space governing much of human behavior. And Kendon defined how people arrange
themselves in formations when engaging in a conversation. These models, among
others, can also be expressed by spatial heatmaps.

3.3 Advantages of Modeling with Heatmaps
There are several advantages of modeling human behavior through heatmaps. First,
they help cluster the data needed by each human behavior model by visually repre-
senting the geographic distribution of certain activities or behaviors, and offering
a common way of encoding arbitrary information used for simulating a particular
aspect of human reasoning. This clustering allows for fully defining each behavior
within its self-contained layer, holding the data needed for modeling the behavior
characterized by a heatmap. Moreover, having a standard format for encoding

3.3. ADVANTAGES OF MODELING WITH HEATMAPS 55

behavioral information allows for combing them together in a straightforward and
computationally efficient way.

For example, there could be several approaches for modeling of the noise stimulus
represented by the heatmap shown in Figure 3.5 (D). In fact, there are several
models that could be employed for simulating how sound propagates throughout
the environment [88]. In this case, the heatmap approach makes it possible to
employ multiple sound propagation models, and cluster the resulting information
into a single data structure. Since the clustered sound data is represented by single
heatmap, the resulting behavior does not rely on any additional information. Thus,
it is possible to assert that the behavior belongs to a self-contained layer, which
could be enabled or disabled without impacting other parts of the simulation.

3.3.1 Spreading Data Across Several Heatmaps

Figure 3.5: (A) Top down view of a city district; (B) Rain shelter heatmap; (C)
Park trails heatmap; (D) Main roads heatmap

Spatial heatmaps make it convenient to encode arbitrary information into

56 CHAPTER 3. THEORETICAL FRAMEWORK

separate layers. For instance, Figure 3.1 considers several stimuli that might govern
human behavior. Let’s focus on only three of them: preferring locations sheltered
from rain, prioritizing the trails in the park, and stressing the importance of avoiding
the main roads. By applying behavioral rules to a person in a real-world location, it
is possible to see how the heatmap encoding would look like. Figure 3.5 (A) shows a
top-down view of a city district containing several buildings, streets, and a walkable
park in the middle. A possible heatmap highlighting the locations sheltered from the
rain is visible in Figure 3.5 (B), where areas surrounding buildings have balconies
stopping the rain. Similarly, Figure 3.5 (C), models the stimulus of walking in or
near nature, by highlighting park trails, and finally (D) encodes data about the
location of the busiest roads.

It is possible to see here how each heatmap encodes only one specific stimulus
that influences human behavior, and this comes with several advantages:

• Each behavior is independent of the others since it only relies on data contained
in one particular layer. Although this is a simplification of human behavior,
it is convenient for modeling purposes.

• Layers can be enabled or disabled: much like layers in image editing programs,
it is very convenient to toggle a particular stimulus by modifying the activation
status of the layer.

• Influence can be weighted: the behavior associated with each heatmap can
have a stronger or weaker impact on the simulation, based on the weight of
the associated layer.

3.3.2 Absolute and Relative Heatmaps
Heatmaps can be used to encode both absolute and relative data, depending on the
nature of the information they represent. Absolute heatmaps encode data about
the entire environment, reflecting fixed attributes or characteristics. For instance, a
heatmap displaying the height of buildings in a city would be absolute, as it conveys
information about the entire urban landscape that is not dependent on any specific
location within it.

Conversely, relative heatmaps encode data concerning a particular position or
entity, capturing information that changes based on the context or location. An
example of a relative heatmap would be one illustrating the perception of personal
space for individuals within a crowd. In this case, the heatmap is relative to each
person’s position, as the perception of personal space varies depending on the
surrounding environment, proximity to others, and other factors that dynamically
change as the individual moves.

By utilizing both absolute and relative heatmaps, designers and decision-makers
can gain a comprehensive understanding of various aspects of an environment, as
well as the dynamic relationships and interactions among its elements. This enables
the creation of more accurate and effective models that account for both fixed
attributes and situational factors.

For instance, Figure 3.6 presents two distinct heatmaps side by side. The
heatmap on the left is represented with an absolute coordinate system, illustrating

3.3. ADVANTAGES OF MODELING WITH HEATMAPS 57

the height of buildings in a city. As it is based on the world’s coordinate system, it
remains fixed and independent of any particular individual’s position within the
environment.

In contrast, the heatmap on the right portrays a relative concept—personal
space—using a coordinate system that is dependent on each person’s position. As
individuals move throughout the environment, the heatmap dynamically adjusts to
reflect the varying perception of personal space relative to their changing locations.

Figure 3.6: Left: An example of an Absolute Heatmap, encoding the height of
buildings in a city. Left: An example of a relative heatmap encoding personal space.

3.3.3 Heatmaps with Varying Resolutions
The size of environments represented by heatmaps can differ significantly, and as a
result, the computational resources required for larger heatmaps can be substantial.
Consequently, heatmaps must support varying resolutions to accommodate different
scenarios effectively.

The resolution of a heatmap might depend on several factors, such as the map’s
size, the data’s importance, and the desired level of detail. For instance, when
encoding a heatmap for an entire city, it might be necessary to use a lower resolution
due to the vastness of the environment. This approach conserves computational
resources while still providing an overview of the city’s relevant data.

In contrast, a heatmap representing personal space can typically utilize a higher
resolution since it covers a smaller area. The increased resolution allows for a more
detailed and accurate representation of the personal space, which may be crucial
for understanding individual interactions within the environment.

To accommodate these varying requirements, heatmaps should include a scale
parameter. This parameter represents the relationship between world units (such
as meters) and heatmap units, enabling adjustments to the resolution as needed.
By incorporating different resolutions, heatmaps can effectively represent diverse
environments and situations, allowing designers and researchers to make informed
decisions based on the available data.

58 CHAPTER 3. THEORETICAL FRAMEWORK

Figure 3.7 presents an exaggerated example of two heatmaps with distinct
resolutions. The high-resolution heatmap, which encodes personal space, is overlaid
on top of the lower-resolution heatmap representing building height. The personal
space heatmap requires greater detail due to its smaller size and the importance
of capturing subtle variations. In contrast, the building height heatmap covers
a larger area and features less variation, so a lower resolution is suitable for this
representation.

Figure 3.7: An example of heatmaps with varying resolutions. The building height
heatmap has a lower resolution than the personal space heatmap.

3.3.4 Blending Heatmaps for Combining Models
Since heatmaps are two-dimensional arrays where each cell contains color data,
they can be treated as images, and it is possible to combine them by applying
color operations. Several color operations can be applied to heatmaps, among
which are addition, subtraction, multiplication, and division. These operations are
well-defined in the field of image processing, where they are used to combine images.

By separating the data of each behavior into a single heatmap, or layer, it
becomes convenient to combine them in several meaningful ways. For example, the
layers of Figure 3.5 represent two attractive stimuli: the rain shelter and the park
trails, and one repulsive stimulus: the noisy main roads. Even though each heatmap
highlights a distinct aspect of the environment, the first two can be combined
through a simple addition, while the last one can then be subtracted from the result.

3.3. ADVANTAGES OF MODELING WITH HEATMAPS 59

Figure 3.8: Each heatmap encodes a different stimulus that might influence human
behavior. The colors of the first top two are summed together, and the third one is
subtracted from the result.

That way, the resulting heatmap will highlight the areas that are sheltered from
the rain and have trails, while avoiding the main roads, as shown in Figure 3.8.

The layers can be weighted to control the influence of each behavior on the final
result. Weights are essential when several stimuli influence a person’s behavior, and
each has different importance, possibly depending on the context. For example, in
an emergency such as a severe storm, the person might be more likely to seek shelter
from the rain, and the trails in the park might be less critical. In this case, the
weight of each heatmap layer can be dynamically adjusted to reflect the importance
of each stimulus. This feature both empowers the authoring process by allowing for
more control over the simulation, and it also allows for more realistic simulations
since the weights can be based on real-world data.

Finally, modeling an agent whose behavior is based on the resulting heatmap
makes it possible to simulate a person who accounts for several stimuli simultaneously.
Referring to the example of Figure 3.8, the simulated person would prefer to walk
in dry spots of the park while avoiding the main roads.

3.3.5 Combining Heatmaps with Different Sizes
In order to address the issue of combining heatmaps with different sizes, where
some cells of the larger heatmap may not overlap with those of the smaller heatmap,
it is crucial to define an out-of-bounds strategy. This strategy determines how to
handle color operations between cells containing data and those that do not. An
example of this strategy is illustrated in Figure 3.9.

A potential solution is to treat empty cells as color neutral for the given operation
(e.g., black for addition and subtraction, white for multiplication and division).
Another approach involves assigning colors to out-of-bounds cells based on colors

60 CHAPTER 3. THEORETICAL FRAMEWORK

Figure 3.9: In this example two heatmaps A and B are combined using the addition
operation. Since they have different sizes, respectively 4x4 and 6x6, it is necessary to
define an out-of-bound strategy for the cells that are not covered by both heatmaps.
The first strategy is to consider the out-of-bound cells as neutral to the operation
(black for addition), which results in A1. The second strategy is to consider the
out-of-bound cells belonging to the heatmap, effectively wrapping the heatmap
cells around its borders - shown in A2 (red). Then, it is possible to carry out the
addition operation between the two heatmaps, resulting in C1 and C2 depending
on the out-of-bound strategy adopted.

inside the heatmap. In this case, methods from computer graphics, such as texture
mapping with UV coordinates, can be applied. UV in this context refers to the
coordinates in a 2D space (usually a texture map in computer graphics) that are used
to map textures or colors onto a 3D object; the “U” coordinate can be understood
as the equivalent of “X” in a 3D space, and “V” as equivalent to “Y”. When the
bounds of the UV space are reached, the texture can either be repeated or clamped.
Similarly, with heatmaps, the color of the nearest border cell can be repeated, or
the heatmap can wrap around so that cells on the opposite side of the border are

3.4. HEATMAP BEHAVIOR MODELING 61

considered adjacent.

3.3.6 Dynamic Heatmaps
Some stimuli that influence human behavior are dynamic and change over time.
For example, when modeling an agent which reacts to overcrowding, it is necessary
to consider that the number of people in particular locations changes during the
day. Additionally, even if the stimulus does not change, the agent’s perception of
it might change over time. For instance, the overcrowding perception might be
more prominent during the night, when it is not expected to see many people in
the streets, even when that number is the same or lower than during the day.

For this reason, it is necessary to support dynamic heatmaps, which can change
over time. Dynamic heatmaps can be updated through localized operations, which
only affect a particular region, or by editing the whole heatmap at once. For
example, a crowdedness heatmap can be locally updated by increasing the value of
the cells where people are and decreasing the value of the cells where people are
spreading out, all in real time.

3.3.7 Heatmaps Performance
Since heatmaps can be encoded into images, creating and modifying them through
image processing libraries is possible. These libraries often take advantage of the
GPU to accelerate operations, which makes them very efficient. In particular,
when considering a heatmap as a texture where each cell is a pixel, instead of
processing the heatmap sequentially cell by cell, the GPU can process multiple cells
in parallel, which makes the operations much faster. This advantage is especially
noticeable when encoding data that can be computed visually, such as the height of
buildings, which can be obtained by rendering the environment from a top-down
perspective and using the depth buffer to encode the building size in each cell.
Then, it becomes possible to create and modify heatmaps in real time, which is
very useful for encoding phenomena that continuously change.

3.4 Leveraging Heatmaps for Human Behavior
Modeling

Once heatmaps are defined, they can be used to model human behavior. There are
several levels of reasoning at which heatmaps can be used, from low-level to high-
level. Lower levels concern obstacle avoidance and pathfinding, while higher levels
concern goal selection and decision-making. This section describes how heatmaps
can be used to model human behavior at each level.

3.4.1 High Level Behavior Modeling
At this stage of human behavior simulation, heatmaps can be used to model high-
level goals and decision-making. In particular, they help decide which goals to
pursue and how to pursue them. This can be achieved by finding the highest value

62 CHAPTER 3. THEORETICAL FRAMEWORK

Figure 3.10: Example of a heatmap used to select a goal. Each goal influences the
heatmap differently, contributing a specific value to the cells that are close to it,
based on its importance. The agent then selects the goal which has the highest
value in the heatmap, which in this case is goal 3.

in the heatmap and considering the underlying location as the goal to reach, as
shown in Figure 3.10. For example, a person might be looking for a place to eat,
and the heatmap can encode the quality of the restaurants in the area. Then, the
person can move to the location with the highest value, which is the restaurant
with the highest quality. Again, since heatmaps can be combined, it is possible to
combine several heatmaps to encode different aspects of the environment. Thus,
the goal selection can be based on a combination of several weighted goals. This is
very useful for modeling complex behaviors, such as the decision-making process of
a person who is driven by multiple goals.

3.4.2 Global Path Planning Adjustments
Heatmaps can also be used for global path planning adjustments. They are particu-
larly useful for modeling the effects of the environment on the agent’s perception
of the path. Thus, trajectories computed by path planners can be adjusted by
leveraging the heatmap. Since there are several global path-planning approaches,
and not all of them produce complete trajectories, it is necessary to define how to
apply the adjustments. For the algorithms that compute a complete trajectory, the
adjustments can be applied by modifying the trajectory itself. For instance, the
trajectory can be modified by adding a new waypoint in any of the locations with
the highest value sampled at regular intervals, as shown in Figure 3.11. One example
of this is the navigation mesh approach, which computes a complete trajectory from

3.4. HEATMAP BEHAVIOR MODELING 63

Figure 3.11: Example of a heatmap used to adjust the path of an agent. The agent
originally tried to reach the goal following the shortest path, composed of waypoints,
returned by the pathfinding algorithm. At each waypoint, the agent checks the
heatmap and adjusts its path going towards the direction of the highest value. In
this example, the agent perceives an attractor on the third waypoint of the path.
The agent then adjusts its trajectory toward the attractor before reaching the goal.

the start to the goal. In this case, it is simply possible to traverse the trajectory,
sample the heatmap at regular intervals, and add new waypoints in the locations
with the highest values. The result is a trajectory that follows the heatmap as well
as the original path, thus guaranteeing that the agent will reach the goal while also
taking into account the stimuli encoded in the heatmap.

On the other hand, there are path planning algorithms that do not compute a
complete trajectory, but rather follow a path incrementally step by step. In these
cases, the agent does not have a complete trajectory of waypoints to follow but
is rather instructed to move according to a particular velocity vector, which is
dynamically recomputed at each step. This means that the algorithm does not offer,
out of the box, a way for knowing where the agent will be in the future. For this
reason, simply modifying the velocity vector to follow the heatmap is not enough,
because the agent might end up moving in the wrong direction. Thus, it is necessary
to define a way to transform the sequence of velocity vectors into a trajectory
and then apply the necessary adjustments for following the heatmap. This can be
achieved by using a simple integration scheme, such as the Euler method, which
computes the trajectory by integrating the velocity vector at each step. Then,
the trajectory can be modified by adding new waypoints in the locations with the
highest value sampled at regular intervals. This approach can be used with any
path planning algorithm that does not compute a complete trajectory, such as the

64 CHAPTER 3. THEORETICAL FRAMEWORK

potential field approach, which computes the velocity vector at each step.

3.4.3 Local Steering

Figure 3.12: Example of local steering using a group social territory heatmap
relative to the group’s position. An agent is walking when it suddenly notices a
group of people moving in the opposite direction. The group claims a region of
social territory, encoded in the heatmap and perceived by the agent - who then
changes direction to avoid intruding on the group’s space.

Another application of heatmaps is local steering, which deals with dynamic
stimuli that change over time, and thus cannot be encoded in a static heatmap
or accounted for in the global path-planning process. At this level of reactive
navigation, the agent aims to reach the goal while avoiding other agents or moving
obstacles. Generally, the agent perceives its surroundings, computes the vectors
that would lead to a collision, and then chooses a velocity outside this set [142].
In this context, heatmaps can augment the agent’s perception of the obstacles in
the environment, thus enabling it to react to multiple dynamic obstructions at the
same time. The agent can use a dynamic heatmap to steer towards the lowest
values, indicating places where there are no or fewer obstacles. This approach can
be used to compound the effects of multiple dynamic obstacles by combining the
corresponding heatmaps.

For example, when walking in a crowded street, a person might suddenly notice
that a group of people is moving in the opposite direction. In that case, they might
change direction to avoid intruding on the group’s social territory. This stimulus
can be modeled by a relative heatmap that encodes the group’s social territory,
which represents the space claimed by the group of agents. Then, any agent can
perceive the group’s social territory in their local surroundings through the heatmap
and adjust their path accordingly, as shown in Figure 3.12.

3.5. OPERATORS FORMALIZATION 65

3.5 Operators Formalization
Formalizing the syntax of an operator is a crucial aspect of developing a robust
and user-friendly framework. By formally defining the syntax of an operator,
it is possible to specify exactly how the operator should be used, including any
parameters needed to compute the operation. This helps ensure that different
framework users can employ the operators correctly and consistently. Formally
defining the syntax of an operator also helps to improve the readability of the
operations, making it easier for users to understand the meaning of the operations.
Additionally, the formalization of operator syntax is an important aspect that
enables writing concise and meaningful expressions to indicate complex operations.
This section formalizes the operators used to create and modify heatmaps. The
operators are defined in terms of the heatmaps’ underlying data structure, a 2D
grid of cells. Table 3.1 lists the operators used to create and modify heatmaps.

Operation Notation Description Complexity

Add A + B
Sum the value of every cell of A
with the ones in B O(n)

Subtract A−B
Subtracts the value of every cell
of A with the ones in B O(n)

Multiply A ·B Multiplies the value of every cell
of A with the ones in B O(n)

Divide A/B
Divides the value of every cell of
A with the ones in B O(n)

Average µ(A, B) Average the value of every cell of
A with the ones in B O(n)

Threshold τ(A, t, v1, v2)
Sets the value of each cell in the
heatmap to v1 if it is below a
threshold t, v2 otherwise.

O(n)

Normalize Â
Normalizes the heatmap by set-
ting the maximum value to 1. O(n)

Invert !A Inverts the heatmap by subtract-
ing the value of each cell from 1. O(n)

Table 3.1: Operators for Heatmaps.

The addition operation A + B sums the value of every cell of A with the ones in
B. Summing two heatmaps is useful for combining concordant stimuli, either both
attractive or repulsive. For example, referring to Figure 3.5, heatmaps A and B are
both attractive, representing rain shelters and park trails. In this case, they are
summed together, resulting in the heatmap shown in the center of Figure 3.8.

The multiplication operation computes the product of the values of the cells
in the two heatmaps. Differently from addition, since the mathematical product
has the property that 0 · x = 0, the result of the operation is a heatmap where
the values of the cells are zero if the value of the corresponding cell in either of

66 CHAPTER 3. THEORETICAL FRAMEWORK

the heatmaps is zero. Thus, multiplying two heatmaps is particularly useful for
modeling the influence of stimuli that only affect certain parts of the environment.
For example, a heatmap that encodes the effect of a light source on its surrounding
can be multiplied by a heatmap that encodes the visibility of the environment so
that the influence of the light source is only applied to the visible parts of the
environment. In this example, the light source heatmap would not need to account
for occlusions, which would be encoded in the visibility heatmap, and affect the
result.

The subtraction operation A − B subtracts the value of every cell of A from
the ones in B. Subtracting two heatmaps is useful for combining discordant stimuli,
either one attractive and the other repulsive. For example, referring to Figure 3.5,
heatmap C encodes a repulsive stimulus representing the noisy main roads. Then,
C is subtracted from the others, resulting in the heatmap shown on the right of
Figure 3.8. Similarly, the division operation A/B divides the value of every cell of
A by the ones in B and can be used to combine discordant stimuli in a stronger
way than subtraction.

The average operation µ(A, B) computes the mean of the values of the cells in
the two heatmaps. This operation is useful when combining stimuli whose agreement
is irrelevant, or cannot be determined a priori. For example, referring to Figure 3.8,
if it was not known how the rain shelters and the park trails stimuli interact with
each other, they could be averaged together resulting in a heatmap that encodes
the average effect of both stimuli.

The threshold operation τ(A, t, v1, v2) sets the value of each cell in the heatmap
to v1 if it is below a threshold t, v2 otherwise. This operation is particularly useful
for toggling the effect of a stimulus based on the context. For example, a heatmap
that encodes the level of emotional distress of a person can be limited to only affect
the behavior when the value of the heatmap is above a certain threshold, such as in
an emergency.

The normalization operation Â normalizes the heatmap by setting the maximum
value to 1. This operation is useful for ensuring that the values of the cells in the
heatmap are in the range [0, 1]. This is important because different heatmaps can
have different ranges of values, for dissimilar units of measurement, which can affect
the result of the operations. For example, a heatmap that encodes a light source
can be measured in lumens, while a heatmap that encodes a sound source can be
measured in decibels. In this case, the light source heatmap would have a higher
range of values than the sound source heatmap, which would affect the result of the
operations. Thus, normalizing the heatmaps ensures that the values of the cells are
in the same range and that the result of the operations is not affected by the units
of measurement.

The inversion operation !A inverts the heatmap by subtracting the value of each
cell from 1. This is useful for modeling stimuli that drastically change based on
context, without the need to recompute the opposite effect into a new heatmap. For
example, a heatmap that encodes the visibility of the environment can be used to
model the behavior of a confident person who is attracted by the most visible parts
of the environment. The same heatmap can be inverted to model the behavior of a
shy person who is repulsed by the most visible parts of the environment, without

3.6. HEATMAP CALIBRATION AND EVALUATION 67

the need to recompute the opposite effect into a new heatmap.

3.6 Heatmap Calibration and Evaluation
Current models of human behavior have become increasingly sophisticated to capture
the complexity of human reasoning. However, sophisticated models often require
many parameters influencing the resulting behavior. Then, it is necessary to calibrate
the models’ parameters to obtain a realistic and believable simulation. However,
first, it is necessary to define metrics for evaluating the simulation’s realism and
believability. For this reason, parameter calibration and model evaluation are closely
related. The calibration process can be seen as a search for the best parameters that
maximize the model’s evaluation metrics. Thus, the calibration-evaluation process
is often iterative: the model is employed in a simulation, the results are evaluated,
the parameters are adjusted, and the process is repeated until the convergence
criteria are met.

By employing heatmap-based models, the calibration and evaluation process
can be improved. The calibration process can be simplified because the model’s
parameters are encoded in the heatmap and do not depend on the agent architecture.
Thus, the calibration process can be reduced to finding the heatmap that best fits
the desired behavior.

Existing literature reveals numerous instances where crowd simulations are
evaluated through visual comparison with real-world or other simulated data. While
providing valuable insights, this method of qualitative, subjective assessment may
lack precision and is potentially influenced by individual interpretation.

Within the work of Wolinski et al. [149], images are utilized to depict agent
trajectories in the simulation and other models. These visual representations
provide a basic level of comparison, offering a qualitative sense of the model’s
performance. Similarly, Wang et al. [146] employ a method of clustering agent
trajectories, striking a balance between microscopic and macroscopic evaluation.
While the visual comparison between simulated and real-world data is incorporated,
a reliance is seen on custom similarity metrics for more rigorous, quantitative
evaluation.

Despite the significant insights these studies offer, a comprehensive quantitative
evaluation based on image similarity is notably absent. More traditional metrics,
such as path absolute difference, inter-pedestrian distance, and the fundamental
diagram, are employed instead. The lack of a structured, quantitative approach
to image similarity assessment for crowd simulations is thus a noticeable gap in
current evaluation practices.

This gap is highlighted when considering the established value of image sim-
ilarity metrics in other domains, such as signal processing. Metrics such as the
Mean Squared Error (MSE) [147], the Peak signal-to-noise ratio (PSNR) [38], the
Structural Similarity Index (SSIM) [37], and the Earth Mover Distance (EMD)
[121] are routinely used in these fields to quantitatively assess the quality of an
image or signal replication.

The theoretical framework proposed here presents a novel approach: established
image similarity metrics are to be leveraged for the quantitative evaluation of crowd

68 CHAPTER 3. THEORETICAL FRAMEWORK

simulations. By transforming the output of simulations into heatmaps, a direct,
quantitative comparison with reference data can be achieved, echoing established
practices in signal processing. This approach introduces a new dimension to crowd
simulation evaluation, offering a systematic, objective measure of how accurately a
real-world phenomenon is captured in a simulation.

Heatmaps, as a clustered representation of agent behavior, offer an avenue for
comprehensive evaluation of simulation accuracy, going beyond the capabilities of
traditional metrics. A balance is struck between high-level evaluation, which focuses
on broad metrics like the ratio between crowd density and agent velocities, and
low-level evaluation which compares individual simulated agents’ trajectories with
the real ones. The high-level approach often fails to account for the heterogeneity
of human behaviors, while the low-level approach is generally too specific to the
exact scenario being simulated.

By recording the activity of real pedestrians and clustering them into a heatmap—a
process that can be mirrored with the simulated crowd—heatmaps can be utilized
to compare the simulated crowd with the real one. The two heatmaps can then
be compared using image similarity metrics such as MSE, PSNR, SSIM, or EMD.
This method enables the comparison of various aspects of crowd behavior, from
pedestrians’ trajectories to velocities, against their real-world counterparts. The
results can then be averaged to obtain a single, comprehensive evaluation metric.

In summary, this framework integrates visualization and quantitative evaluation
through the use of image similarity metrics, advancing the robustness of simulation
quality assessment. This novel approach moves beyond traditional subjective visual
assessment towards a more objective and precise evaluation strategy, enhancing
understanding of the accuracy and usefulness of crowd simulations.

3.7 Discussion
This chapter has argued that several stimuli can influence the behavior of pedestrians
in a crowd. Traditional models of human behavior, which rely on fragmented
components of crowd simulation, have been developed over the years to capture
the complexity of human reasoning and decision-making at different levels of
abstraction. Here, a new theoretical framework for modeling human behavior in
crowds is proposed based on heatmaps. The concept of heatmaps in the context of
crowd simulation was defined, and a formalization of the operators used to create
and modify them was presented. Then, it has been proposed how heatmaps can be
leveraged to model the influence of stimuli on the behavior of pedestrians in a crowd
at different levels of abstraction: high-level goal selection, global path adjustments,
and local steering adaptation. Moreover, the calibration and evaluation of crowd
simulation models were discussed, and it was argued that heatmaps help evaluate
the simulation’s accuracy more comprehensively than other traditional metrics.

Chapter 4

Agora Architecture

The Agora crowd simulation framework is designed to provide a usable, modular,
scalable, and versatile solution for simulating and analyzing crowd dynamics in
various scenarios. As explained in Section 1.2.1, Agora aims to address the frag-
mentation and limited interoperability in existing crowd simulation models, which
hinders the creation of accurate and realistic simulations of human behaviors and
interactions. By offering a unified approach that enables seamless integration and
combination of multiple behavior models, Agora facilitates meaningful comparisons
and supports the creation of comprehensive and accurate simulations of human
behavior in various scenarios and environments.

This chapter presents the architecture of the Agora framework, discussing the
design and user considerations, requirements, generic components, and their specific
software implementations within the system. The first part of this chapter outlines
the design considerations and requirements that guided the development of the
framework. By focusing on aspects such as usability, modularity, scalability, and
versatility, Agora is designed to provide an effective and user-friendly solution that
meets the needs of a wide audience and addresses the constraints of current crowd
simulation solutions.

Following the discussion of design considerations, the high-level architecture of
the framework is presented, describing the primary generic components and their
respective roles and responsibilities. That section emphasizes the importance of a
clear separation of concerns, modularity, and maintainability in the design of the
framework. The generic components include User Interface, Data Handler, Crowd
Generator, Crowd Simulator, Visualizer, Evaluator, and Plugin System.

Next, the software architecture of Agora is further explored, demonstrating how
each component corresponds to specific software systems or techniques designed
to fulfill its intended function. The backbone of the framework is composed of
the integration of Unity 3D and Menge, which collectively address the authoring,
simulation, visualization, and evaluation aspects of the crowd simulation process.
The software architecture leverages a range of well-established tools and systems to
achieve the framework’s goals explained in Section 4.1. Throughout this chapter,
each component is examined in detail, with its respective implementation presented

69

70 CHAPTER 4. AGORA ARCHITECTURE

and the merits of the chosen architecture argued.

4.1 Requirements and Objectives
This section discusses four key design considerations for the architecture of the Agora
framework: usability, modularity, scalability, and versatility. These are summarized
in Table 4.1. Each of these considerations directly addresses aspects of the problem
statement, which highlights the fragmentation and limited interoperability in existing
crowd simulation models.

Usability fosters a convenient authoring process for crowd appearance, environ-
ment, and agents’ behavior, allowing users to easily create and modify simulations,
which addresses the challenge of a lack of user-friendly tools for integrating and
comparing models.

Modularity ensures domain independence and extensibility, making the frame-
work applicable to different scenarios and easily integrated with new features. This
consideration tackles the problem of closely tied behavior models to their underlying
components and technologies.

Scalability includes simulating a large number of agents at interactive framerates
while maintaining a balance between the level of detail and performance. This
consideration directly addresses the need for more accurate and realistic simulations
of human behaviors and interactions.

Versatility allows heatmaps to be applied to various sub-problems of crowd
simulation, facilitating meaningful comparisons, behavior combination, reusability,
and collaboration. This consideration aims to resolve the fragmentation issue by
providing a unified approach to integrating and comparing multiple behavior models.

4.1. REQUIREMENTS AND OBJECTIVES 71

Objective Description

Usability User-friendly interface for configuring crowd appearance, authoring
heatmaps and environment elements, and evaluating models.

Modularity Ensures a flexible and reusable framework through domain-
independent design and extensibility, accommodating the changing
needs of different domains and facilitating the integration of new
features.

Scalability Balances complexity and performance by managing agent count,
behavior variety, and level of detail, ensuring efficient simulations
across various scenarios and crowd dynamics.

Versatility Enables meaningful model comparisons, heatmap integration,
reusability, and collaboration, supporting the development of com-
prehensive behavior models and collective advancements.

Table 4.1: Summary of the requirements and objectives for the crowd simulation
framework.

4.1.1 Usability
A user-friendly interface for visualizing and authoring crowd appearance, agent
behavior, environment, and performing model evaluation is essential for the success
of the Agora framework. It increases user engagement, reduces the barriers to entry
for less experienced people, and facilitates collaboration among multiple parties.
Thus, the Agora framework should satisfy the following requirements:

Authoring Crowd Appearance

It should be possible to author several elements of the crowd’s appearance, including
the shape, color, accessories, and animations. This allows the creation of a diverse-
looking crowd, which is important for the believability of the simulation, as seen in
Section 2.2.2.

Authoring Behavioral Heatmaps

The framework should include a user-friendly interface for creating and editing
heatmaps that represent human behavior. Moreover, it should be possible to easily
combine the heatmaps through color operations, as seen in Table 3.1, to create
more complex agent behaviors.

Authoring Environment and Parameters

One should be able to conveniently author several elements of the environment and
the related agents’ parameters. The former refers to the actual physical appearance
of the environment that will host the crowd as well as the number of agents, the

72 CHAPTER 4. AGORA ARCHITECTURE

spawning and exit locations, and the obstacles that will be present in the scene.
The latter refers to the parameters that relate the agents to the environment, such
as the agent’s radius and maximum speed/acceleration.

Performing Model Evaluation

The framework should include a user-friendly interface for model evaluation that
allows comparing the simulation output with real-world data. It should be possible
to easily import location data, such as trajectories, cluster it into a heatmap, and
compare it with the corresponding simulation output.

4.1.2 Modularity
To work effectively across various domains and adapt to changing needs, the
framework needs to have a modular design. This approach involves isolating
components, which results in a more flexible and reusable framework. By adopting
a modular design, customization becomes more convenient, as extensive changes
to the core architecture are not necessary. Additionally, modularity makes it easy
to add new features, ensuring that the framework remains relevant to the specific
needs of different domains. As such, the following design considerations should be
satisfied:

Domain Independent

Heatmaps provide a generic visual representation of how individuals interact with
elements in a given environment and are thus a versatile tool for modeling human
behavior across multiple domains such as evacuation, public transportation, and
large-scale events. The framework should leverage this versatility by providing a
generic interface for applying heatmaps to crowd simulation in a domain-independent
manner.

Extensible

The framework should be easily customizable to meet the changing needs of different
domains and to enable the incorporation of new features and functionalities.

4.1.3 Scalability
The framework should be scalable to accommodate varying levels of complexity in
simulations. It should be possible to adjust the level of detail of several aspects to
strike a balance between complexity and performance.

Number of Agents

The framework should be able to handle an increasing number of agents with
a manageable increase in computational complexity, for ensuring that it can be
applied to a wide range of scenarios and can efficiently simulate complex crowd
behaviors.

4.2. COMPONENTS OVERVIEW 73

Number of Behaviors

The framework should be able to accommodate a growing number of behaviors
while maintaining a reasonable level of performance, guaranteeing its applicability
across various scenarios and facilitating the efficient simulation of complex social
interactions and diverse crowd dynamics.

Level of Detail

The framework should allow the adjustment of the level of detail in various aspects
of the simulation, encompassing both graphical elements (such as models and
animations) and behavioral components (ranging from simple to complex behaviors).

4.1.4 Versatility
Last but not least, the Agora framework should be versatile, promoting consolidation
within the crowd simulation field, to address the problem explained in Section 2.5,
by fostering the solution of key aspects such as meaningful model comparisons,
behavior combination, reusability, and collaboration.

Meaningful Comparisons

The framework should facilitate standardized and straightforward model comparison
methods, enabling researchers to conduct meaningful evaluations of their crowd
simulation results and fostering coherence and consensus within the field.

Behavior Combination

The framework should support the combination of multiple human social behav-
ior models through heatmap integration, contributing to the development of a
comprehensive and holistic model of human social behavior in simulations.

Reusability

The framework should promote the reusability of heatmaps or their generation
processes, allowing researchers to seamlessly incorporate these elements into their
models or use cases, enhancing efficiency and interoperability.

Collaboration

The framework should encourage collaboration among researchers by streamlining
the sharing and integration of behavior models into a repository, enabling the
seamless incorporation of diverse behaviors into any simulation, and fostering
innovation and collective advancements in the field.

74 CHAPTER 4. AGORA ARCHITECTURE

Crowd Appearence
Description

Behavior and Environment
visual description

User Interface

Environment Editor

Behavior Editor

Crowd Editor
Behavior and Environment

Specifications

Data Handler

Data Importer

Data Exporter

Data Converter

Character Model

Crowd Generator

Character Creator

Character Instantiator

Agents Data
Simulation

Output

Crowd Simulator

Simulation Engine

Behavior Models

Event System

Visualizer

Renderer

Animator

Camera

Evaluator

Data Collector

Heatmap Generator

Comparator

Additional Models
And features

Plugin System

Plugin Interface | Plugin Manager | Plugin Repository

R
eal W

orld
D

ata

Figure 4.1: This component diagram illustrates the structure of the Agora crowd
simulation framework.

4.2. COMPONENTS OVERVIEW 75

4.2 Components Overview
This section presents a high-level description of the crowd simulation framework
architecture, focusing on the division of the system into various components and
their respective roles and responsibilities. The primary goal of this architecture is
to create a system that effectively addresses the challenges associated with crowd
simulation (see Chapter 2) while satisfying the considerations explained in the
previous Section 4.1.

The proposed framework architecture, shown in Figure 4.1, is divided into
seven main components, each of which is further subdivided into specialized sub-
components tailored to address specific aspects of the simulation process. The
components include User Interface, Data Handler, Crowd Generator, Crowd Simu-
lator, Visualizer, Evaluator, and Plugin System. The following subsections describe
each component in detail, outlining their roles and importance within the architec-
ture, and arguing for the merits of the chosen division.

4.2.1 User Interface
The User Interface (UI) component serves as the primary point of interaction
between the user and the crowd simulation framework. It is designed to provide a
user-friendly and intuitive experience that facilitates the editing of both the envi-
ronment and agent behavior properties, as well as the management of visualization
options. By simplifying these tasks, the UI enhances the user’s ability to effectively
create, modify, and analyze crowd simulations.

The UI component is responsible for several key functions within the framework,
including:

1. Environment Editing: The UI allows users to visually and interactively
define and modify various aspects of the environment, such as agent spawn lo-
cations, obstacles, and boundaries. Moreover, it is capable of visualizing these
elements with graphical representations. This seamless interaction enables
users to efficiently create and modify simulation scenarios that represent the
desired real-world environment.

2. Behavior Authoring: The UI facilitates behavior authoring by providing a
node-based graphical interface that encapsulates a finite state machine, which
has been demonstrated to be a powerful way to model agent behavior by
previous research [137]. Each node represents a specific aspect of an agent’s
reasoning. The UI introduces the innovative concept of heatmap nodes at this
stage, which can store behavioral data and offer combination capabilities.

The user interface component’s division into distinct functions ensures that each
aspect of user interaction is managed effectively. By providing a comprehensive
and user-friendly interface, this component greatly enhances the overall usability of
the crowd simulation framework, satisfying the considerations explained in Section
4.1.1.

76 CHAPTER 4. AGORA ARCHITECTURE

4.2.2 Data Handler
The data handler component is responsible for managing data import and export
within the crowd simulation framework. It ensures seamless data flow and conversion
between different formats. This component simplifies user interaction and allows
for a more streamlined simulation process by handling data-related tasks, such as
generating specification files in the correct format and without errors, which users
would otherwise have to do manually. This frees users from the burden of technical
details and allows them to focus on the simulation itself.

The primary functions of the data handler are:

1. Data Import: Handles the loading and parsing of various input data, such
as XML specification files and real-world data. This enables the framework to
incorporate user-defined scenarios and behavior models, as well as compare
simulation outputs with actual data.

2. Data Export: Is responsible for exporting simulation outputs and other
relevant data for analysis, visualization, or storage. This ensures that users
can easily access and utilize the results of their simulations for further study
or evaluation.

3. Data Conversion: Facilitates the conversion between different data formats
as required by the framework. This includes converting XML files to visual
elements for the UI or transforming real-world data into a format suitable for
comparison with simulation outputs.

The data handler’s organization into specific functions highlights the importance
of efficient data management in the framework. As a dedicated component for
handling data-related tasks, the data handler ensures smooth data flow and seamless
integration between various parts of the framework, thereby increasing its overall
versatility, as required by the considerations explained in Section 4.1.4.

4.2.3 Crowd Generator
The crowd generator component is responsible for generating diverse and realistic-
looking crowds of agents based on human templates. By incorporating a com-
prehensive character creation and modification system, explained in Section 2.2.2,
the crowd generator enhances the overall realism and visual appeal of the crowds
generated by the framework, making it suitable for a wide range of applications
and research purposes.

The crowd generator comprises three main sub-components:

1. Character Creator: Is responsible for creating diverse virtual characters
with varied traits and features. It offers a system for defining standard human
models, composed of fully rigged 3D meshes and corresponding textures, which
can be deformed by altering inherent properties to create characters with
diverse shapes and sizes.

4.2. COMPONENTS OVERVIEW 77

2. Character Customizator: Enables the creation of a collection of clothes and
accessories that can be applied to characters. It also allows for the definition
of custom textures and color schemes for various character features, such as
skin, hair, and eyes, enhancing their visual diversity and individuality.

3. Character Instantiator: Offers multiple character creation methods that
provide users with various levels of control over the creation process. These
methods include manual definition and random generation within defined
feature ranges. This versatility allows users to create diverse populations of
agents that fit their specific needs.

4. Level of Detail Manager: Allows users to control the complexity of the
agents’ models and animations. This feature helps optimize the performance
of the simulation, making it more efficient and allowing for larger crowds.

The separation of the crowd generator into these distinct sub-components
highlights the emphasis on producing realistic and visually engaging crowds. By
including a dedicated component for generating diverse virtual agents, the architec-
ture maintains a balance between performance and visual quality, thereby enhancing
the scalability of the framework, as mentioned in Section 4.1.3.

4.2.4 Crowd Simulator
The crowd simulator component is at the core of the framework. It is responsible for
running the simulation based on the user-defined environment, agent behaviors, and
other specified parameters. This component ensures that the simulation accurately
and efficiently represents the desired scenarios, taking into account various factors
that influence agent behaviors and interactions within the environment.

The crowd simulator is composed of three sub-modules:

1. Simulation Engine: Manages the core simulation logic, handling agent
updates and interactions between agents and the environment. It processes
the input data and computes the resulting agent positions, rotations, velocities,
and other relevant parameters based on the specified behavior models and
environmental factors.

2. Behavior Models: Encapsulates different agent behavior models and pro-
vides a modular way to define, modify, and combine them. This enables users
to create customized and realistic agent behaviors that accurately represent
the desired real-world scenarios.

3. Event System: Is responsible for managing events that facilitate communi-
cation between the simulator and other components of the framework. This
allows for dynamic updates and real-time adjustments during the simula-
tion, ensuring that the system remains responsive and adaptable to changing
conditions or user inputs.

By having a dedicated component for running the simulation and managing
agent behaviors, the architecture is better equipped to integrate new features and

78 CHAPTER 4. AGORA ARCHITECTURE

techniques, ultimately enhancing the framework’s overall versatility, as mentioned
in Section 4.1.4.

4.2.5 Visualizer
The visualizer component is responsible for rendering the crowd simulation in a
visually accessible and interactive manner. By providing a clear and comprehensible
representation of the simulated environment, agents, and behaviors in real time, the
visualizer enables users to effectively analyze and evaluate the ongoing dynamics of
their simulations.

The visualizer comprises three main parts:

1. Renderer: Handles the actual rendering of agents and environments, sup-
porting multiple levels of detail and various graphical representations. The
Renderer ensures that the visualization of the simulation is accurate, efficient,
and visually appealing, facilitating user understanding and analysis.

2. Animation System: Is responsible for managing agent animations and
transitions, particularly for more complex 3D meshes. By providing smooth
and realistic animations, this sub-component enhances the overall visual
quality agents’ behaviors.

3. Camera Controller: Allows users to interact with and control the camera
during visualization, enabling them to navigate the simulated environment
and focus on specific areas or agents of interest. This feature contributes to
the user’s ability to effectively analyze and evaluate the simulation results.

By offering a visually accessible and interactive representation of the simulated
environment, agents, and behaviors in real time, the visualizer component effectively
addresses the usability design consideration discussed in Section 4.1.1.

4.2.6 Evaluator
The evaluator component is designed to facilitate the assessment and validation
of the crowd simulation outputs by comparing them with real-world data. This
component enables users to measure the accuracy and reliability of their simulations,
identify areas for improvement, and gain insights into the influence of various factors
on agent behaviors.

The evaluator consists of three main elements:

1. Data Collection: Records agent positions, agent states, and other relevant
data during the simulation. By collecting this data, the evaluator lays the
foundation for subsequent heatmap generation and comparison with real-world
data.

2. Heatmap Generator: Converts the collected simulation data into heatmaps,
which provide a graphical representation of agent behaviors and interactions
within the environment. These heatmaps serve as the basis for comparison with

4.2. COMPONENTS OVERVIEW 79

real-world data and facilitate the identification of similarities and differences
between the simulated and actual scenarios.

3. Comparison Module: Compares the heatmaps generated by the simulation
with the ones created from real-world data using image similarity metrics.
This allows users to assess the accuracy and reliability of their simulations, as
well as identify the influence of specific factors, such as overcrowding or group
formations, on the simulation outcomes.

The Evaluator component highlights the importance of objectively evaluating
simulation models, a factor that is often overlooked in the crowd simulation process.
By including a dedicated component for assessing simulation outputs, the architec-
ture fosters continuous improvement, ultimately enhancing the models’ performance.
As such, this component addresses both usability and versatility, as discussed in
Sections 4.1.1 and 4.1.4.

4.2.7 Plugin System
The plugin system component is the part of the crowd simulation framework designed
to facilitate the development and integration of custom plugins. It enables users to
incorporate new features, algorithms, and techniques, tailoring the framework to
their specific requirements. Additionally, it provides a common platform for sharing
these extensions, allowing other users to discover and reuse them.

The plugin system comprises three main units:

1. Plugin Interface: Defines the standardized interfaces and protocols that
custom plugins must adhere to in order to interact with the core framework.
The plugin interface ensures a consistent and seamless integration of plugins,
allowing them to effectively extend and enhance the functionality of the
system.

2. Plugin Manager: Is responsible for managing the discovery, loading, and
activation of plugins within the framework. This includes handling the
registration of plugins, resolving dependencies, and managing their lifecycle.
The plugin manager streamlines the integration of custom plugins and ensures
their compatibility with the core framework.

3. Plugin Repository: Serves as a centralized location for storing and sharing
custom plugins, facilitating the distribution and adoption of new features and
techniques within the crowd simulation community. By providing a common
platform for plugin discovery and access, the plugin repository encourages
collaboration and innovation among users and developers.

By providing a structured and flexible approach to plugin development, the
plugin system ensures that the framework can evolve with the changing needs of
users and advancements in the field of crowd simulation. Moreover, by providing a
common platform for sharing these extensions, it allows other users to discover and
reuse them, fostering collaboration and innovation within the community. These
features satisfy the modularity and versatility design considerations discussed in
Section 4.1.4 and 4.1.2.

80 CHAPTER 4. AGORA ARCHITECTURE

Component Description

User Interface Enables users to author and configure simulation parame-
ters and agent behaviors.

Data Handler Handles data input, output, and management for simulation
configuration and results.

Crowd Generator Generates diverse and visually engaging virtual crowds
based on human templates.

Crowd Simulator Executes and manages the crowd simulation and agent
behaviors.

Visualizer Renders the crowd simulation in an accessible and interac-
tive manner.

Evaluator Assesses simulation performance and compares results with
ground truth data.

Plugin System Integrates custom plugins and extensions to the framework.

Table 4.2: Components of the crowd simulation framework and their brief descrip-
tions.

4.2.8 Summary and Discussion
The proposed framework architecture presents a comprehensive and modular ap-
proach to crowd simulation, addressing various aspects of the process from user
interaction and data management to visualization and evaluation. The division of
the framework into seven main components, each with specialized sub-components,
ensures a clear separation of concerns – summarized in Table 4.2. This robust and
flexible architecture lays a solid foundation for the development of a crowd simula-
tion framework that can effectively handle diverse scenarios and accommodate the
ever-evolving needs of researchers and practitioners in the field of crowd simulation
and analysis.

4.3 Agora Software Architecture
In the previous section, a high-level description of the proposed crowd simulation
framework’s generic components was presented, emphasizing their roles and respon-
sibilities within the system. This section further explores the software architecture of
the framework, demonstrating how each generic component corresponds to a specific
software system or technique designed to fulfill its intended function, resulting in
the definition of the Agora crowd simulation framework. For a comparison between
the generic and specific components, refer to Figures 4.2 and 4.3.

4.3. AGORA SOFTWARE ARCHITECTURE 81

Crowd Appearence
Description

Behavior and Environment
visual description

Unity-based User Interface

Custom Environment Editor

xNode Behavior Authoring Tool

Behavior and Environment
Specifications

Data Manager

XML Serialization

XML Deserialization

Character Model

Unity Multipurpose Avatar
(UMA) Crowd Engine

Crowd Editor

Dynamic Character System

Crowd Randomizer

Agents Data
Simulation

Output

Menge Simulator

Scene & Behavior Specification

MengeCore Simulator (DLL)

Custom Event System

Unity-based Visualizer

Universal Render Pipeline

Mechanim | Blend Tree

Unity Camera System

OpenCV Evaluator

OpenCV for Unity Plugin

xNode Evaluation Editor

Evaluation Metrics (MSE, SSIM)

Additional Models
And features

Plugin Manager

Menge Plugin System | Unity Package Manager

R
eal W

orld
D

ata

Figure 4.2: This component diagram illustrates the software architecture of the
Agora framework. It is based on Figure 4.1, where each generic component has
been matched with a specific software system.

82 CHAPTER 4. AGORA ARCHITECTURE

The overall backbone of Agora is composed of the integration between Unity 3D
and Menge, which collectively address the authoring, simulation, visualization, and
evaluation aspects of the crowd simulation process. Unity 3D provides a set of tools
for creating, editing and rendering complex environments and characters, while
the Menge crowd simulator offers a flexible platform for modeling and simulating
agent behaviors in various scenarios. The combination of these two systems results
in a comprehensive framework capable of addressing the challenges of the crowd
simulation field described in Section 2.5.

The software architecture incorporates a range of components, each designed to
perform specific functions within Agora. Overall, the user interface for designing
scene specifications is developed within Unity’s custom editors, while the authoring
tool for agent behavior is based on xNode. The Data Handler leverages .NET
serialization, while the crowd generator employs the Unity Multipurpose Avatar
system. Menge, extended to integrate heatmaps, serves as the crowd simulator
component, while Unity’s universal render pipeline, Mecanim, and Cinemachine
handle visualization and interaction. Lastly, the evaluator component relies on
OpenCV to compare the generated heatmaps with ground truth data, and the plugin
system utilizes both Menge’s plugin architecture and Unity’s package Manager for
extensibility.

The choice of this particular configuration of components provides several
advantages in achieving Agora’s goals. By leveraging the strengths of both Unity
3D and Menge, Agora can efficiently model and simulate agent behaviors while
offering visualization capabilities. Additionally, the use of well-established tools
and systems ensures a degree of reliability and maintainability, facilitating future
enhancements and modifications. Furthermore, the integration of heatmaps as a
core aspect of Agora allows for more holistic representations of agent behaviors,
contributing to the overall realism of the simulations.

In summary, the software architecture of the proposed crowd simulation frame-
work aims to address the challenges associated with crowd simulation, as discussed
in Section 2.5, offering a comprehensive and extensible solution that takes advantage
of the combined capabilities of Unity 3D and Menge crowd simulator.

4.3.1 Unity-based User Interface
The Unity-based User Interface (UI) component, developed within the Unity 3D
game engine, serves as the primary point of interaction between the user and the
crowd simulation framework. By utilizing Unity Custom Editors and the Unity
xNode editor, the UI component provides a user-friendly and intuitive experience
that streamlines the process of editing both the environment and agent behavior
properties. This ultimately enhances the user’s ability to effectively create, modify,
and analyze crowd simulations.

The Unity-based UI component is responsible for several key functions within
Agora, including:

1. Environment Editor: Using Unity Custom Editors, the UI allows users to
define and modify various aspects of the environment, such as agent spawn
locations, obstacles, and boundaries. By visually editing the parameters

4.3. AGORA SOFTWARE ARCHITECTURE 83

Generic Component (Specific Component)
User Interface (Unity-based User Interface)

Environment Editor (Unity Custom Environment Editor)
Behavior Editor (xNode Behavior Editor)

Data Handler (Data Manager)
Data Import (XML Deserializer)
Data Export (XML Serializer)
Data Conversion (Format Converter)

Crowd Generator (UMA Engine)
Character Creator (UMA GUI)
Character Customizer (DNA, Wardrobe)
Character Instantiator (UMA DCS & Randomizer)

Crowd Simulator (Menge Simulator)
Simulation Engine (MengeCore)
Behavior Models (Menge BFSM)
Event System (Menge API Callbacks)

Visualizer (Unity-based Visualizer)
Renderer (Universal Render Pipeline)
Animation System (Mechanim, Blend Trees)
Camera Controller (Unity Camera System)

Evaluator (OpenCV Evaluator)
Data Collection (Importer)
Heatmap Generator (xNode Evaluation Editor)
Comparison Module (OpenCV Similarity Metrics)

Plugin System (Plugin Manager)
Plugin Interface (Menge Plugin Architecture)
Plugin Manager (Unity Package Manager)
Plugin Repository (GitHub Public Repository)

Figure 4.3: Generic vs specific components of the crowd simulation framework.

84 CHAPTER 4. AGORA ARCHITECTURE

related to the scene specification and offering a convenient GUI, the UI
ensures that the simulation environment accurately represents the desired
real-world scenario.

2. Behavior Authoring: The Unity xNode editor, a visual scripting tool for
the Unity game engine, facilitates behavior authoring through a custom-made
node-based graphical interface. Each node represents a specific aspect of
an agent’s reasoning, corresponding to components of Menge’s Behavioral
Finite State Machine. Additional custom nodes integrate with the heatmap
plugin extension, enabling users to easily leverage heatmaps for influencing
agent behaviors. The integration between xNode and Menge BFSM allows
for dynamic modification of agent behavior at runtime. For example, the
heatmap goal selector can be notified when an agent changes its state and
feed the BFSM a new goal based on the relevant heatmap.

The Unity-based user interface component effectively implements the features
outlined in the user interface Section 4.2.1 by providing environment editing and
behavior authoring functionality through the use of Unity custom editors and the
xNode authoring tool. This implementation simplifies the interaction between the
user and the crowd simulation framework, aligning with the goals of the generic UI
component and enhancing the overall user experience.

4.3.2 Data Manager
The data manager component is responsible for the efficient handling of data input
and output within the crowd simulation framework, facilitating seamless data
exchange between the user, the environment, and agent behaviors. By leveraging
the .NET serialization capabilities, specifically the IXmlSerializable interface, the
data manager ensures that the simulation data is stored, retrieved, and transformed
accurately and reliably.

The data manager component fulfills several essential roles within Agora, in-
cluding:

1. Data Serialization: Utilizing the IXmlSerializable interface, the data man-
ager allows for the customization of object serialization to and from XML.
This enables Agora to effectively store and manage simulation data in a
structured and human-readable format. By defining custom XML serialization
methods, the data manager ensures that objects are serialized consistently and
accurately, simplifying the process of saving and loading simulation scenarios.

2. Data Deserialization: Similarly, the IXmlSerializable interface also empow-
ers the data manager to deserialize XML data back into objects within the
crowd simulation framework. This process is crucial for restoring previously
saved simulation scenarios and enabling users to modify and analyze them
further. Custom deserialization methods ensure that the data is reconstructed
with precision, preserving the integrity of the simulation data.

4.3. AGORA SOFTWARE ARCHITECTURE 85

3. Data Exchange: The data manager component also facilitates data exchange
between different elements of the framework, such as the Unity-based user
interface and the Menge crowd simulator. By managing the transfer of data
between these systems, the data manager helps to maintain synchronization
and consistency throughout the simulation process.

The data manager addresses the requirements for efficient data management
within the Agora framework. By leveraging .NET serialization capabilities, the data
manager successfully fulfills the primary functions of data serialization, deserializa-
tion, and exchange, aligning with the goals of the generic data handler component
noted in Section 4.2.2.

4.3.3 Unity Multipurpose Avatar Engine
The UMA Engine is responsible for the creation and customization of dynamic and
diverse character models within the crowd simulation framework. By integrating the
UMA package, Agora gains access to a modular and extensible system that allows
for a wide range of character appearance, clothing, and accessory options, which
ultimately enhances the realism and visual variety of the agents in the simulation.

UMA serves several key functions within the framework, including:

1. Character Generation and Customization: UMA enables the generation
of customizable 3D character models, providing users with the ability to
create diverse and realistic agents that better represent real-world populations.
UMA’s DNA system, inspired by the concept of human DNA, allows users to
adjust various aspects of a character’s appearance, such as skin color, facial
features, and body proportions. This customization extends to clothing and
accessories, with numerous options that can be combined and tweaked to
achieve the desired visual representation of agents.

2. Agent Instantiation: In addition to creating single characters with prede-
fined appearances using the Dynamic Character System (DCS), UMA features
a randomizer that lets users define ranges for the DNA values and probabil-
ities for accessories and colors. This powerful tool allows for the dynamic
generation of populations of agents, which will probabilistically exhibit the
specified traits, resulting in varied and realistic crowd simulations.

3. Performance Optimization: To maintain a balance between visual fidelity
and performance, UMA incorporates several optimization techniques, such
as texture and mesh atlasing. These techniques help minimize the rendering
overhead associated with displaying large numbers of unique characters in a
crowd simulation, enabling users to run simulations with large crowds without
sacrificing visual quality or simulation speed.

The integration of UMA into Agora significantly enhances the system’s capabili-
ties in generating visually diverse and realistic agents. By offering a flexible and
extensible solution for character generation and customization, instantiation with
both predefined and probabilistic appearances, and optimization, UMA offers an
effective implementation of the requirements of Section 4.2.3.

86 CHAPTER 4. AGORA ARCHITECTURE

4.3.4 Menge Simulator
The crowd simulator is built upon Menge1, a flexible and modular framework
for simulating crowds and developing innovative pedestrian models. Menge was
developed by Curtis et al. at the University of North Carolina - Chapel Hill. It
decomposes crowd simulation into computational components which address various
aspects of crowd simulation such as goal selection, global path planning, and local
collision avoidance. In this work, Menge has been integrated more closely with
Unity and extended to incorporate the heatmap paradigm for influencing agent
behavior. This enhanced version is designed to interact seamlessly with other
software components of Agora, including authoring through the User Interface,
obtaining input and producing outputs with the Data Manager, and displaying 3D
animated agents via the Unity Visualizer.

The three main subcomponents of the Menge simulator are as follows:

1. Scene Specification: The scene specification delineates the elements of the
simulation, encompassing static obstacles, elevation objects, spatial query
mechanisms, and agent populations. By incorporating a graphical user in-
terface as an extension of the Unity editor to author scenes and parameters,
the process of setting up simulations can be streamlined, thereby reducing
the time required to create realistic and dynamic environments tailored to
specific use cases.

2. Behavior Specification: The behavior specification ascertains how the
simulation’s state evolves. Menge employs the concept of a Finite State
Machine (FSM) to encode behaviors, which govern agents’ goals, strategies,
and characteristics. In the present use case, the heatmap paradigm is utilized
to influence agent behavior, connecting it to the xNode component of the
user interface. This approach permits more intuitive and efficient control over
agent actions and reactions within the simulated environment.

3. Event System: The simulation pipeline has been extended to encompass
arbitrary callbacks that can be set by an external entity, such as the Simulation
Manager in Unity. This extension enables Menge to perceive and respond to
external data, adjusting agent behaviors in real time accordingly.

In summary, the integration of Menge with Unity and the incorporation of the
heatmap paradigm provide significant advantages. This combination enables users
to easily create realistic simulations and explore various pedestrian models and
techniques. Additionally, it promotes a more interactive and responsive simulation
environment, facilitated by the event system, which ultimately expedites the ad-
vancement of crowd simulation methods. This effective implementation successfully
addresses the requirements of Section 4.2.4.

4.3.5 Unity-based Visualizer
The Unity-based Visualizer component, leveraging the Unity 3D game engine, is
responsible for the real-time visualization of the crowd simulation environment and

1http://gamma.cs.unc.edu/Menge/

4.3. AGORA SOFTWARE ARCHITECTURE 87

agents. By utilizing advanced rendering and animation techniques, such as the
Universal Render Pipeline (URP), Mecanim, as well as a versatile Camera System
called Cinemachine, the Visualizer component significantly enhances the realism
and user experience of the crowd simulation framework.

The Unity-based Visualizer component comprises the following key elements:

1. Universal Render Pipeline: provides advanced graphics features and
performance optimization tools for rendering virtual environments. In the
context of the Agora framework, URP is used to visualize both the environment
where the simulation takes place and the agents that are part of the crowd
simulation. Menge handles the backend simulation, continuously streaming
output data such as agent positions, orientations, and velocities. These data
are then visualized by the Unity-based Visualizer in the form of optimized 3D
human meshes, generated by the Crowd Generator.

2. Mecanim: The Unity Animation System, Mecanim, is a toolkit for crafting
animations, which can be employed to introduce diversity to pedestrian move-
ments in crowd simulation. In this context, blend trees enable developers to
blend various animations, including those from external services like Mixamo,
based on an agent’s state, producing seamless transitions that enhance the
realism of the visualization. In the Agora framework, this system is used to
animate the 3D human models rendered by the URP. The agent velocities
streamed by Menge during the simulation are used as input to a blend tree that
appropriately interpolates Mixamo animations to match speed and direction,
resulting in realistic and diverse pedestrian movements.

3. Camera System: Unity’s Camera System, captures and displays scenes from
different perspectives, offering features for adjusting position, field of view,
and projection. Cinemachine supports multiple camera views and can create
custom effects using scripting or post-processing. In the Agora framework,
this component is employed to explore and observe the simulation as it unfolds,
providing users with the ability to gain unique insights into the behavior of
the simulated agents and the overall performance of the crowd simulation.

In summary, the Unity-based visualizer effectively implements the requirements
described in Section 4.2.5. By leveraging advanced rendering and animation tech-
niques, such as the Universal Render Pipeline, Mecanim, as well as the versatile
Cinemachine camera system, this system ensures a visually accessible and interac-
tive real-time representation of the simulated environment, agents, and behaviors.
This comprehensive visualization enhances users’ ability to effectively analyze and
evaluate the ongoing dynamics of their simulations.

4.3.6 OpenCV Evaluator
The Evaluator component is designed to objectively assess the realism of the crowd
simulation model by comparing the generated heatmaps with their ground truth
counterparts. It achieves this by employing OpenCV for Unity and a custom

88 CHAPTER 4. AGORA ARCHITECTURE

node-based xNode editor window, which allows users to effectively leverage heatmap
nodes and perform evaluations seamlessly.

1. Evaluation Window: The Evaluator component is designed with a custom
node-based xNode editor window, similar to the behavior editor, which makes
it convenient for users to perform evaluations. This window allows users to
effectively leverage heatmap nodes, combine them (in cases where there are
multiple outputs), and employ comparator nodes to obtain a similarity metric
between the generated heatmap and ground truth data.

2. OpenCV for Unity: Performs the comparison of heatmaps in the crowd
simulation framework. OpenCV is a computer vision library that can be
integrated into the Unity game engine through plugins. It provides a wide
range of functionalities, including comparing images using objective similarity
metrics such as Mean Squared Error (MSE), or the Structural Similarity Index
Measure (SSIM). In the context of the Agora framework, this is employed to
compare the heatmaps generated by the crowd simulation with ground truth
data, enabling an objective evaluation of the simulation’s performance and
realism.

The novel integration of OpenCV with the xNode user interface not only
emphasizes the importance of evaluating simulation models but also enhances the
evaluation process by offering a range of features. The Agora OpenCV Evaluator
is capable of converting agent trajectories into heatmaps, visually representing
agent behaviors, and providing a convenient, node-based GUI for user interaction.
By offering the ability to compare heatmaps and generate similarity scores, the
OpenCV Evaluator effectively implements the requirements described in Section
4.2.6.

4.3.7 Plugin Manager
The plugin manager component of the Agora framework is designed to offer extension
capabilities by leveraging both Menge’s plugin architecture and the Unity Package
Manager. This approach provides a flexible platform for developers to extend
the functionality of the crowd simulation framework, share agent behaviors, and
introduce new features.

The plugin manager is composed of two elements with different functions:

1. Menge Plugin System: Menge’s plugin architecture allows developers to
extend the functionality of the crowd simulation framework by adding new
plugins. These plugins can be used to customize or add new simulation
behaviors or data, such as new agent types or steering behaviors. For instance,
in the case of Agora, the Menge plugin system enabled the compartmentalized
implementation of the heatmap plugin, offering additional capabilities for the
crowd simulator.

2. Unity Package Manager: The Unity Package Manager is a tool that man-
ages packages in Unity projects, allowing developers to import, update, remove,

4.3. AGORA SOFTWARE ARCHITECTURE 89

and create custom packages. This functionality enables the distribution of
the entire Agora framework as a Unity package, making it easily accessible
and usable for users. By utilizing the Unity Package Manager, Agora can be
easily shared and extended by the community, fostering collaboration and
innovation.

By leveraging the strengths of both Menge’s plugin architecture and the Unity
package manager, the Agora framework’s plugin manager provides an extensible
platform for sharing crowd simulation components. This approach encourages the
development of new features, agent behaviors, and tools, ultimately contributing to
the ongoing improvement and expansion of Agora in the broader community. These
features satisfy the requirements described in Section 4.2.7.

4.3.8 Summary and Discussion
In summary, the Agora framework’s software architecture employs a combination
of well-established and specialized software systems, summarized in Table 4.3, such
as the Unity-based user interface, the UMA engine, the Menge simulator, and the
OpenCV evaluator. These systems were carefully chosen, integrated, built, and
extended to provide a cohesive, intuitive, and efficient experience for users. This
allows Agora to be an effective solution capable of addressing various requirements
in crowd simulation and agent behavior modeling.

90 CHAPTER 4. AGORA ARCHITECTURE

Component Description

Unity-based
User Interface

Visual editor and node-based scripting tool for simulation config-
uration and agent behavior, with heatmap plugin integration.

Data
Manager

Handles I/O and management of simulation data using .NET
serialization and IXmlSerializable interface for XML data for-
matting.

UMA Engine Generates diverse virtual crowds using UMA, providing a modu-
lar and extensible architecture for character customization.

Menge
Simulator

Simulates crowd behavior with several algorithms offered by
Menge extended with the Heatmap Plugin for influencing agent
behavior.

Unity-based
Visualizer

Uses Unity’s URP for rendering, Mecanim for animation, and
the Camera System for visualization.

OpenCV
Evaluator

Uses OpenCV for Unity similarity metrics to compare simula-
tion heatmaps against real-world data, objectively evaluating
the simulation.

Plugin
Manager

Enables customization and extension of the framework through
Menge’s plugin architecture and Unity Package Manager.

Table 4.3: Specific components for the crowd simulation framework and their brief
descriptions.

Chapter 5

Agora Implementation

This Chapter presents a comprehensive overview of the implementation of the
Agora crowd simulation framework, detailing the development and integration of
its various components. Some elements of the software architecture were extended
from existing solutions, while others were built from scratch, all coming together to
form a cohesive crowd simulation framework. Section 5.1 discusses the integration
of Menge and Unity, showcasing how these frameworks were combined to create
crowd simulations. Section 5.2 focuses on the Unity Multipurpose Avatar, detailing
the creation, animation, and instantiation of agents within the crowd. Section 5.3
explores scene authoring and the process of designing realistic environments for
simulations. In Section 5.4, the focus is on behavior authoring, discussing the tools
and techniques used to create and manage agent behaviors within the framework.
Section 5.5 presents the Menge heatmap plugin, explaining its implementation
and various functionalities that enable the use of heatmaps within the simulation.
Finally, Section 5.6 discusses the OpenCV Evaluator, describing the process of
converting positional data to heatmaps, comparing heatmaps, and providing a
graphical user interface for evaluation purposes.

5.1 Menge-Unity Integration
This section discusses the integration of Menge and Unity, two of the primary
components of the Agora crowd simulation framework. It covers the integration of
Menge with Unity, the adaptation of a native plugin loader, and the extension of the
Menge C-API. These features contribute to a more robust and efficient simulation
framework.

5.1.1 Menge so Far
Menge, a powerful, cross-platform, modular framework for crowd simulation [32],
serves as a foundational component for the Agora framework. Being a versatile
and extensible platform, Menge offers a solid basis for research and development
in various aspects of crowd simulation, such as behavioral modeling, global path

91

92 CHAPTER 5. AGORA IMPLEMENTATION

planning, and local collision avoidance. Its plug-in architecture enables researchers
to focus on specific aspects of crowd simulation while relying on built-in functionality
for other components.

Menge is written in C++ and compiled into a Dynamic Link Library (DLL),
a library of functions that can be loaded and executed at runtime, enhancing
portability and enabling code reuse across different applications. Menge exposes a
C API, making it possible to use the simulator with other programming languages,
such as C#.

A C# wrapper project, MengeCS, produces a DLL that can be included in C#
projects, providing access to the Menge simulation core. This simple wrapper of the
Menge C-API allows for the initialization of the Menge simulator, stepping through
simulations, and querying minimum agent state.

There is already a rudimentary integration between Menge and Unity 3D,
another backbone component of the Agora framework. The Unity project provides
an initial structure and organization for integrating the two systems. This integration
primarily includes a SimController script capable of running a simulation with
Menge and visualizing a basic output where agents are displayed as 3D mesh
cylinders. This initial integration lays the groundwork for the development of a
more comprehensive and user-friendly crowd simulation framework in Agora.

Menge, being a C++ DLL, requires integration with Unity, which runs on C#.
To better understand the challenges and solutions in achieving this integration, it’s
essential to discuss the differences between managed and unmanaged code.

Native code, also known as unmanaged code, is compiled directly into machine
language, which is executed by the computer’s hardware. It provides better per-
formance but lacks features such as automatic memory management and type
safety, which are characteristic of managed code. Managed code runs on a virtual
machine—in the case of .NET, it’s the Common Language Runtime (CLR) with
Just-In-Time (JIT) compilation. Managed code offers benefits such as memory
management, type safety, and platform independence.

Interoperability options between managed and unmanaged code include Platform
Invocation Services (P/Invoke) and C++/CLI. P/Invoke enables managed code to
call unmanaged functions in dynamic link libraries. This method is simple and
offers high performance but is limited to specific function signatures and requires
careful memory management. C++/CLI, on the other hand, is a language extension
that allows seamless integration between C++ and .NET languages. It provides a
more natural and flexible interface between the two but may introduce overhead
and additional complexity.

Menge relies on P/Invoke for its interoperability, enabling C# code in Unity to
call functions in the Menge C++ DLL. This approach requires careful consideration
of memory management and function signatures, ensuring compatibility between
the two systems.

Unity, in dealing with native code, provides facilities for integrating unmanaged
code through plugins, allowing developers to utilize the performance benefits of
native code while still leveraging the features and ease of use offered by the Unity
environment. This integration between Menge and Unity lays the foundation for
the Agora framework and paves the way for further development of a comprehensive

5.1. MENGE-UNITY INTEGRATION 93

and user-friendly crowd simulation system.
The remainder of this section will focus on discussing a selection of challenges

and solutions encountered during the process of integrating Menge and Unity.

5.1.2 Native Plugins in Unity
The Problem. By default, native plugins in Unity do not unload, leading to
garbage instance retention. This occurs when native class destructors are not called,
resulting in retained references to garbage instances. This retention can cause
memory leaks, resource mismanagement, and even memory access violations, poten-
tially leading to undefined behavior, crashes, or data corruption in the application.
Implementing a system that enables the loading and unloading of native plugins
at runtime, like the Agora framework’s native plugin loader, is crucial to mitigate
these issues and enhance the efficiency and stability of the development process.

The Solution. In the implementation of the Agora framework, the native plugin
loader1 system was adapted to address the challenges associated with working with
native plugins in Unity. This solution enables the loading and unloading of native
plugins, such as DLL files, at runtime, streamlining the integration of native code
(e.g., Menge C++ libraries) with managed code (C#) in Unity.

By utilizing custom attributes to designate C# classes as native plugin wrappers
and static fields as native plugin functions, the NativePluginLoader class efficiently
handles the loading and binding of native libraries and their functions. Crucially, it
manages the unloading of native plugins when required.

This approach resolves the issue of Unity not unloading native plugins by
facilitating their explicit unloading and reloading during runtime. Consequently,
developers can modify and update native plugins without restarting the Unity
editor, enhancing the development process’s efficiency.

Moreover, this system ensures that consecutive simulation runs remain inde-
pendent and consistent, as native plugins can be unloaded and reloaded as needed.
This eliminates resource conflicts from previous runs, preventing memory leaks,
crashes, or other unexpected behaviors.

The native plugin loader in the Agora framework dynamically loads Menge’s
DLL and its dependencies when the play button is pressed in Unity, leveraging the
Awake2 Unity event. Awake is a built-in Unity event that is called when a script
is initialized, allowing the simulator to efficiently integrate Menge for simulation
purposes.

Once Unity exits play mode, the OnDestroy3 event of the Simulator is triggered,
unloading all native plugins to ensure a fresh state for the next simulation run.
OnDestroy is another built-in Unity event that is called when a script is being
destroyed or when the application is closing. This process significantly improves the
stability and consistency of consecutive simulation runs, making the development
process more efficient and predictable when working with native plugins in Unity.

1https://github.com/forrestthewoods/fts_unity_native_plugin_reloader
2https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
3https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnDestroy.html

94 CHAPTER 5. AGORA IMPLEMENTATION

5.1.3 Menge C-API Extension
Significant improvements have been made to the Menge C-API, enhancing its
capabilities and facilitating more complex interactions with the underlying simu-
lation framework. This section highlights two key advancements: the addition of
functions for greater interaction with the behavioral finite state machine, and the
implementation of event callbacks to inform external entities of crucial transitions.
These extensions enable more sophisticated use cases, such as heatmap-based goal
selection, and foster improved interoperability between Menge and other systems like
Unity, ultimately resulting in a more powerful and flexible simulation framework.

Additional Funcitons. The original Menge API provided basic functionality
for simulator initialization and querying agent states. The simulator could be
initialized by supplying initialization files, including scene and behavior specifications.
Additionally, the simulation could be started and basic agent states, such as positions
and velocities, could be queried. However, access to the behavioral finite state
machine governing the agents’ behavior was not granted.

To overcome this limitation, the Menge API was extended to allow greater
interaction with the behavioral FSM. For instance, functions were implemented to
obtain an agent’s goal and retrieve the goal selection mechanism of the agent state.
This extension proved particularly useful for a plugin feature that facilitates goal
selection based on a heatmap.

With the heatmap-based goal selection plugin, the agent state can be retrieved
and the goal selection mechanism checked to determine if it is managed by an
external entity. If so, a new goal can be assigned to the agent based on the heatmap.
By extending the Menge API, more complex interactions with agent states have
been enabled, enhancing the overall capabilities of the system.

External Agent Generators. Menge, as a configuration-centric framework,
initializes all its elements by parsing configuration files for the scene and behavior at
the beginning of the simulation. This is true for agents as well, which are defined in
the configuration file and instantiated only during the initialization phase. However,
this approach is unrealistic and limiting in terms of dynamically spawning agents
at runtime.

To overcome this limitation, a new method for agent instantiation was imple-
mented, which involved saving the relevant instances of agent initializers and profile
selectors (required for creating new agents) in the simulator. Previously, these
instances were discarded by default after the initialization, as they were not used
for spawning new agents during the simulation.

Next, a new base class of persistent agent generators was created, which would
be maintained in memory instead of being discarded after initialization. A derived
class, called “external” agent generator, was introduced to spawn agents on demand
when prompted by an external entity (such as a Unity-based simulator).

Lastly, these new functions were exposed through the C-API, enabling the
spawning of agents programmatically at runtime using C# function calls. This new
implementation allows for a more flexible agent generation during the simulation.

5.2. UNITY MULTIPURPOSE AVATAR 95

Event Callbacks. The Menge simulation pipeline was adjusted to include event
callbacks, addressing the limitations in the original implementation where external
entities could not be informed about certain transitions, such as changes within
the behavioral finite state machine. During the simulation process, Menge executes
a series of functions, one of which involves advancing the behavioral finite state
machine. This step encompasses evaluating the current state’s transitions to
ascertain if a new state should be entered based on pre-defined conditions.

In the context of this use case, it is essential to determine if the BFSM’s new
state includes a heatmap goal selector. If so, Unity will supply a new goal based
on a heatmap, which is elaborated further in the Heatmap Goal Selection Section.
To facilitate this functionality, event callbacks were implemented in the simulation
pipeline.

The event callback was devised by defining an AgentChangedStateCallback
function, which is invoked when the BFSM is on the verge of transitioning into
a new state. This function informs any subscribers of the impending transition,
providing the agent ID and the name of the new state. Through this focused
modification, external entities can now respond appropriately to state transitions,
enhancing the overall capabilities and interoperability of the Menge simulation
framework, while maintaining a streamlined implementation.

5.2 Unity Multipurpose Avatar
This section discusses the integration of the Unity Multipurpose Avatar (UMA)
framework to generate realistic and diverse virtual crowds. It covers the creation
of a fitting population using custom DNA values and wardrobe, the animation of
agents, and their instantiation in the simulation environment. These adaptations
contribute to a more believable and dynamic simulation.

5.2.1 Creating a Fitting Population
In the UMA engine, two fundamental human templates for male and female charac-
ters are provided. The DNA comprises values for various body parts, with some
being cumulative, such as height, while others are specific, like arm length. Em-
ploying randomizers, ranges of DNA values can be defined to establish a diverse
population of agents. With a curation process carried out in this work, a selected
set of values has been established, along with appropriate colors for skin, hair, and
eyes, ensuring the generation of a realistic and diverse population in appearance,
particularly fitting for the urban environment of case study two (Section 6.2). UMA
incorporates the concept of a wardrobe, which encompasses the collection of meshes
that can be attached to the basic agent template. This primarily includes clothing
but may also feature hairstyles and other accessories that enhance the simulation’s
realism and make agents appear more lifelike. For example, smartphones can be
utilized during idle cycles, allowing agents to appear busy texting or calling instead
of merely standing still.

A key challenge is ensuring that these additional meshes adapt based on the
deformations imposed by the DNA values on the human template. Specifically,

96 CHAPTER 5. AGORA IMPLEMENTATION

clothing must stretch or shrink to accommodate the varying sizes of agents. Fur-
thermore, these meshes must animate correctly, following the agent’s body as they
move.

The default UMA wardrobe is limited and does not provide sufficient clothing
and accessories to create a realistic population suitable for common environments,
especially in colder climates such as Iceland. To address this, additional clothing
and accessories have been designed and incorporated into the UMA wardrobe,
showcased in Figure 5.1. This results in a more varied population that blends
seamlessly into the environment.

To achieve this, 3D meshes were adapted from online marketplaces such as
Sketchfab4. This process entailed sourcing suitable 3D meshes for clothing and
importing them into Blender, along with the basic UMA male or female model,
depending on the mesh being adapted. The UMA template would be positioned in
an A-pose, with legs and arms spread out. Utilizing the tools provided by Blender,
the clothing mesh was modified to fit the UMA model. Once a satisfactory result
was obtained, the clothing mesh was weight painted to ensure it moved correctly in
accordance with the UMA model during animation. Finally, the refined product
was imported into Unity, and a custom recipe was developed to enable the clothing
to be equipped by UMA agents and added to the UMA global library.

Figure 5.1: A diverse UMA crowd showcasing custom DNA values and wardrobe,
illustrating the varied appearances of agents fitting a northern european urban
environment.

4https://sketchfab.com/

5.3. SCENE AUTHORING 97

5.2.2 Animating the Agents
UMA enables the use of a Unity animation controller to animate agents and facilitate
their movement. The animation controller functions as a state machine, featuring
states and transitions that govern the agents’ actions. The custom animator created
primarily introduces variety in the agents’ idle cycles, ensuring natural appearances
while standing, and facilitates believable movement throughout the environment.

The animator consists of several states, including idle and locomotion, both of
which are regulated by blend trees that seamlessly blend relevant animations. The
idle state encompasses multiple animation poses, and as time elapses while an agent
remains stationary, the blend tree interpolates the animations based on time as a
parameter, causing the agent to change its pose. This creates the impression of a
varied idle stance rather than repetitive motion. To prevent synchronization among
multiple agents’ stance changes, the regulating parameter begins with a random
value for each agent, resulting in distinct and dynamic pose alterations over time.

The locomotion state’s blend tree, shown in Figure 5.2, manages the agents’
animations during movement. It contains ten different substates, determined by the
direction and speed of the movement. For instance, if an agent moves forward quickly,
the “sprint forward” animation is played, whereas a rapid backward movement
triggers the “run backward” animation, with interpolations for variations in speed.

Notably, these animations do not influence the agents’ positions, which are
instead controlled by Menge. These animations, known as in-place animations, only
affect the visual appearance of the agents while they navigate the environment. Dur-
ing each timestep of the simulation, the Unity SimulationController script acquires
the instantaneous velocity of each agent from the MengeSimulator and assigns it to
the animator, which then visually represents the moving agent appropriately.

The blend tree’s versatility allows for the addition of more parameters to further
enhance the variety of animations. In this work, the age of the character was
used, allowing the blend tree to impact both idle poses and walking animations.
Consequently, this creates a more varied and realistic representation of agent
behaviors in the simulation.

5.2.3 Instantiating the Agents
When the simulation starts and the Menge simulator is initialized using the scene
specification file containing the initial positions of the agents, the Simulation-
Controller script in Unity employs the agent spawner (UMA random avatar) to
instantiate the correct number of agents in their designated positions. Subsequently,
the random population definition is utilized to generate a diverse crowd of agents,
ensuring a varied and dynamic simulation population.

5.3 Scene Authoring
Menge utilizes scene specification files to define the elements of the simulation,
including static obstacles, elevation objects, spatial query mechanisms, and agent
populations. These files are written in XML format, which can render the authoring

98 CHAPTER 5. AGORA IMPLEMENTATION

Figure 5.2: Part of the animation blend tree that animates the UMA virtual agents.
It interpolates between the various animations based on the agent’s movement speed
and direction.

process cumbersome and prone to errors. Syntax errors or poorly formatted XML
files may not be parsed by the simulator, resulting in a nonfunctional simulation.
Additionally, determining the agents’ spawn locations in the simulation can be
challenging since the agent generator coordinates are not visually represented.
Consequently, the authoring process can be inconvenient, highlighting the need for
a graphical user interface that simplifies this process.

The scene authoring tool, shown in Figure 5.3 is a custom Unity Editor window
designed to serve several functions. It enables the selection of a Menge scene
specification XML file, which could be an existing file containing a simulation’s
specifications or an empty file. In the former case, the file will be parsed into
the appropriate classes; otherwise, it will simply serve as a reference for saving
the authored file. Parsing the file required partially recreating Menge’s scene
specification class structure in C#. The appropriate .NET attributes were then
used to manage the serialization process5, allowing the conversion of XML scene
specification tags into corresponding C# objects.

The GUI facilitates a more intuitive scene parameter authoring process for
the simulation, eliminating the need to write raw XML. Furthermore, it visually
represents some graphical elements of the scene within Unity Editor’s 3D space,
enabling users to interactively modify them. For instance, agent generators can be
dragged around the environment rather than manually editing the XY positions by
inputting values. Once the user has completed authoring the scene specification file,
they can save it, and the editor will serialize the content back into XML format.
This approach greatly enhances the authoring process’s robustness, engagement,
and convenience.

5https://learn.microsoft.com/en-us/dotnet/standard/serialization/
controlling-xml-serialization-using-attributes

5.4. BEHAVIOR AUTHORING 99

Figure 5.3: Example of a Menge pedestrian simulation in an urban environment
running inside the Agora visual framework. Superimposed are the navmesh and
the interactive scene specification GUI.

5.4 Behavior Authoring
Menge employs behavioral finite state machines to determine the behavior of
agents within the simulation. This is achieved through the use of XML in a
behavior specification file. However, the process presents several challenges that
impede its effectiveness. Directly writing the behavior specification in XML can
be counterintuitive, making it difficult for users to grasp the intricate logic and
structure of the behavioral state machines. The complexity of the behavioral state
machines encompasses multiple aspects, such as agent goals, states that include
goal selection, global pathfinding, obstacle avoidance, and transitions with intricate
conditions.

Due to the nature of XML, understanding and authoring the interactions
among these multifaceted elements can be cumbersome, and it is easy to lose
track of the relationships between different components of the behavioral state
machines. In addition to the challenges in visualizing the overall structure and
connections between the elements, the manual authoring process itself can be prone
to errors, such as syntax issues or improper formatting. Such errors may result in a
malfunctioning simulation, necessitating extensive troubleshooting to identify and
resolve the problem.

These challenges emphasize the need for a more user-friendly approach to

100 CHAPTER 5. AGORA IMPLEMENTATION

authoring agent behaviors, one that simplifies the process and allows for a clearer
understanding of the interactions between the various components of the behavioral
state machines. This can be achieved through a graphical user interface that
facilitates a more intuitive authoring experience, minimizes the risk of errors, and
streamlines the process of creating and modifying behavioral state machines, shown
in Figure 5.4.

Gi
GOAL SET STATE

S1
TRANSITION

STATE
S2

OR
CONDITION

TIMER
CONDITION

GOAL
CONDITION

Figure 5.4: A simple visual representation of a Menge BFSM, which includes an
initial state where agents head toward a specific goal. The transition conditions
specify that once agents reach the goal or after a certain amount of time has elapsed,
they will shift into another state where they come to a halt.

5.4.1 xNode Behavior Authoring Tool
xNode is an open-source Unity plugin that offers a flexible framework for developing
custom node-based systems within the Unity editor. This plugin enables the creation
of intuitive graphical interfaces, such as visual scripting tools or behavior trees, using
a node-based approach with customizable nodes connected to define relationships
or data flow.

In Menge, the behavioral finite state machine forms the core of agent behaviors.
Each state in the BFSM determines the agent’s goal, and the methods for pursuing
that goal, and can even impact the agent’s fundamental characteristics, simulating
changes in mood or thought. Transitions between states direct alterations in agent
behavior.

Utilizing xNode for visualizing and authoring BFSMs in Unity offers numerous
benefits. The node-based approach provides a clear visual representation of the
BFSM structure, simplifying the understanding and management of complex agent
behaviors. Custom nodes can be created to meet the specific needs of a BFSM,
facilitating a more efficient development process. Furthermore, the graphical
interface allows for more convenient creation and modification of BFSMs compared
to traditional text-based methods like XML.

In xNode, nodes serve as the fundamental building blocks, while ports enable
communication between these nodes. Each element of the BFSM has been en-

5.4. BEHAVIOR AUTHORING 101

capsulated within an xNode node, allowing them to be instantiated within the
graph. This implementation simplifies the process of creating and modifying BFSM
elements, ensuring a more intuitive and user-friendly experience when designing
agent behaviors within the Unity environment, as shown in Figure 5.5.

During the development process, custom editor windows were created for each
of the nodes to provide additional functionality in a user-friendly manner. In some
cases, this necessitated a reevaluation of Menge’s class hierarchy and deviation from
the XML structure to create a more intuitive GUI.

For instance, in Menge’s original XML hierarchy, goals are defined within a
parent GoalSet tag. A direct translation of this structure would result in a GoalSet
xNode containing a list of Goal nodes. However, implementing this approach would
lead to a cumbersome GUI, as supporting various features of the Goal node within
a nested window inside the GoalSet editor would be challenging.

To address this issue, custom editor windows were developed for each of the
goals and the goal set separately, connecting them using node ports. This approach
enhances the user experience by streamlining the process of configuring goals and
goal sets, making it more visually appealing and easy to manage.

These user experience design considerations were carefully observed and im-
plemented throughout the entire xNode GUI, ensuring an efficient and intuitive
workflow for authoring agent behaviors.

102 CHAPTER 5. AGORA IMPLEMENTATION

Figure 5.5: The xNode behavior authoring tool in Unity for the BFSM graph of
Figure 5.4. The distinction between the class hierarchy of GoalSet and Goal can be
observed.

5.4. BEHAVIOR AUTHORING 103

5.4.2 xNode Heatmap Nodes
Besides the standard Menge BFSM elements implemented as xNode nodes, addi-
tional nodes have been developed to manage the new heatmap-related features. A
notable custom node facilitates the incorporation of heatmaps to influence agent
behaviors within the Menge plugin. This supports the selection of a Texture2D
representing a heatmap and displays a preview of the image. As a result, it becomes
possible to encode a variety of data into heatmaps for guiding the agents.

The true value of this node emerges when it is used in conjunction with another
custom node, known as combiners. Combiners are designed to execute a range
of color operations, summarized in Table 3.1, enabling the merging of multiple
heatmaps. This functionality permits the individual authoring of various stimuli
that affect human behaviors, which can subsequently be integrated to achieve a
more comprehensive modeling of the underlying behavioral patterns.

The combiners function efficiently by employing Unity shader graphs, which
allow to visually design and construct shader programs. By taking advantage of
Unity shader graphs, the combiners can execute color operations and heatmap
blending directly on the GPU, which considerably enhances performance compared
to carrying out these operations on the CPU.

The application of shader graphs for combiners presents two primary bene-
fits. Firstly, the performance improvement arises from shaders operating on the
GPU, allowing for parallel processing capabilities and significantly alleviating the
computational burden on the CPU. Secondly, the visual programming aspect of
shader graphs simplifies the development of new functions or operations, as they
can be readily created and incorporated into a new node. This method refines the
development process while ensuring optimal performance.

Building on this foundation, the output generated by the combiners can be
utilized in a wide array of heatmap-related features to influence agent behavior.
For instance, the resulting combined heatmap can play a significant role in goal
selection. By analyzing the heatmap, agents can identify the most appealing
locations within the environment, thereby driving their movement toward these
areas. This facilitates a more realistic and nuanced representation of how individuals
navigate their surroundings based on various stimuli.

Moreover, the heatmap data can be employed in local obstacle avoidance mech-
anisms. In this context, agents can adapt their steering behavior according to the
information provided by the heatmap. This approach enables agents to dynamically
respond to the environment and make informed decisions in real-time, further
enhancing the accuracy and believability of their behavior.

In summary, the integration of combiners and heatmap-related nodes within the
xNode behavior authoring tool offers a powerful and flexible means for incorporating
diverse stimuli into agent behavior modeling. By enabling the combination of
multiple heatmaps and the application of the resulting data to various aspects
of agent behavior, such as goal selection and local obstacle avoidance, a more
comprehensive and realistic representation of human behavior can be achieved
within the Menge heatmap plugin, as discussed in the next section.

104 CHAPTER 5. AGORA IMPLEMENTATION

Figure 5.6: The xNode Editor for Interacting with Menge’s Heatmap Plugin Using
Images. The authored stimuli are the ones discussed in Figure 3.8.

5.5. MENGE HEATMAP PLUGIN 105

5.5 Menge Heatmap Plugin
This Section discusses the implementation of the Menge heatmap plugin, which
enables the integration of heatmaps into the Menge simulation framework. The
plugin encompasses a heatmap class, a heatmap goal selector, a heatmap velocity
modifier, and a heatmap transition which are discussed in detail in the following
subsections.

5.5.1 Heatmap Implementation
The new heatmap plugin is built upon a dedicated class designed to manage the
heatmap data and offer diverse functionalities for interacting with it. This class is
a crucial component in the overall Agora implementation, allowing for the seamless
integration of heatmaps into the simulation framework.

One of the primary features of this class is the capability to handle conversions
between world coordinates and pixel coordinates. This is achieved by considering
the scale and offset factors to ensure proper alignment of the heatmap data with
the world environment in which the agents operate. Such functionality is essential
for the accurate representation and utilization of heatmap data in the simulation.

Additionally, the class encompasses methods that allow users to query color
values at specific positions within the heatmap. These color values can be used to
influence agent behavior based on the heatmap data. A higher-level functionality is
also provided, enabling the retrieval of color values directly from specified world
coordinates. This further streamlines the integration of heatmap data into the
simulation.

The implementation also includes a function responsible for loading heatmap
data from a file, returning a managed pointer to an instance of the class. This
ensures that the heatmap data is easily accessible and manageable within the
simulation environment.

5.5.2 Heatmap Goal Selector
The Heatmap Goal Selector is a crucial component in the Agora crowd simulation
framework, responsible for determining agents’ goals based on spatial heatmaps.
Heatmaps represent the desirability of different locations in the environment, with
color values assigned to each point on the map, reflecting the attractiveness of that
location. This section discusses two approaches to goal selection using heatmaps: the
Menge-based implementation and an alternative Unity-based implementation. Both
methods focus on efficiently selecting goals for agents by considering various factors,
including the agent’s position, orientation, and perception of the environment.
This comprehensive goal-selection process enhances the overall crowd simulation
experience by providing more realistic and dynamic agent behavior.

Menge-Based Implementation (Static). The HeatmapGoalSelector is de-
signed to effectively select goals for agents in the Menge crowd simulation frame-
work by leveraging a heatmap. The heatmap represents the desirability of different

106 CHAPTER 5. AGORA IMPLEMENTATION

locations in the environment, with each point on the map being assigned a color
value that corresponds to the location’s attractiveness.

This custom goal selector uses a heuristic function to choose the best goal for each
agent. The heuristic function combines various factors, such as the heatmap’s color
information, the angle between the agent’s current orientation and the direction to
the potential goal, and the distance from the agent to the potential goal. The use
of a heuristic function allows for a flexible approach to goal selection that can be
tailored to various scenarios and agent behaviors.

One example of a heuristic function involves the agent’s field of perception, as
shown in Algorithm 1. The field of perception is determined by the agent’s position,
orientation, perception angle, and perception range. Within this field, a set of
points are sampled to identify potential goal locations. The selector then evaluates
each sampled point based on the following factors:

1. Color information from the heatmap: The color value at each sampled
point reflects the desirability of that location. Higher color values indicate
more desirable locations, while lower values signify less desirable ones.

2. Angle to the point: The angle between the agent’s current orientation and
the direction to the sampled point is considered. Ideally, agents should select
goals that require minimal turning, so points with smaller angles are favored.

3. Distance to the point: The distance from the agent’s position to the
sampled point is also taken into account. Goals that are closer to the agent
are generally preferred, as they require less time and effort to reach.

By combining these factors, the heuristic function computes a score for each
sampled point, ultimately choosing the point with the highest score as the agent’s
next goal.

Unity-Based Implementation (Static/Dynamic). A key feature of the Simu-
lationManager is the implementation of the AgentChangedStateCallback function,
designed to respond to events triggered when agents alter their states during the
Menge simulation.

The AgentChangedStateCallback function acts as an event handler that assigns
a new goal to an agent under specific conditions, as described in Algorithm 2. When
an agent’s state changes, the function is called with the agent’s ID and the new
state name as arguments. The script verifies if the new state possesses an external
unity-side goal selector, which signifies a custom goal selection strategy managed
by Unity. In the absence of such a selector, the function returns without assigning
a new goal to the agent.

If an external goal selector is present, the SimulationManager searches the
mengeBFSMSceneGraph, a representation of the behavior finite state machine
employed by Menge to model agent behavior, for a matching state node. The
HeatmapGoalSelector is subsequently retrieved, using a texture or heatmap to
establish the agent’s new goal based on its current position and orientation.

Within Unity authoring framework, the HeatmapGoalSelector node, shown in
Figure 5.7, offers an alternative method for assigning goals to agents based on a

5.5. MENGE HEATMAP PLUGIN 107

Input: Agent’s position p, orientation θ, perception angle α, perception
range r, heatmap H

Output: Selected goal g

foreach angle in [−α
2 , α

2] do
sampleDir ← θ.rotate(angle)
for sampleDist ∈ [0.01, r] do

samplePoint← p + sampleDir × sampleDist
color ← H(samplePoint)
score← computeScore(color, angle)
sampledPointsScores.insert({score, samplePoint})

end
end
pointWithHighestScore← getHighestScorePoint(sampledPointsScores)
newGoal← createNewGoal(pointWithHighestScore)
return newGoal

Algorithm 1: Goal Selection Process Based on Agent’s Perception and Heatmap
Information.

heatmap, extending the Menge-based implementation’s capabilities. This custom
approach delivers a dynamic and efficient goal selection process that seamlessly
integrates with the SimulationManager, taking into account both the agent’s position
and their perception of the environment.

Upon locating the HeatmapGoalSelector, the SimulationManager calls its get-
Goal method to compute the new goal, considering the agent’s position in the 2D
heatmap coordinates. The getGoal method employs a custom shader and a compute
shader to generate a resulting heatmap, reflecting the agent’s perception of the
environment. This resulting heatmap is then used to identify the most desirable
location for the agent.

Once the new goal is determined, the SimulationManager adjusts its position
back to the 3D scene coordinates by incorporating an offset. Subsequently, the
Menge library’s setStatePointGoalForAgent method is invoked to assign the new
goal to the agent, completing the integrated goal selection process.

In essence, the HeatmapGoalSelector and the SimulationManager work in tandem
to provide a cohesive and unified goal-selection process. This process enables
dynamic goal assignment based on the agent’s perception of the environment and
its position within it. The Unity-based implementation of the HeatmapGoalSelector
thus provides a valuable alternative to the Menge-based approach for goal assignment
using heatmaps, enriching the overall crowd simulation experience.

Differences between the approaches. Both the Menge-based and the Unity-
based Heatmap Goal Selector implementations offer unique advantages in the
context of crowd simulation. The Menge-based implementation does not require
Unity, making it more accessible and easier to integrate into various other simulation
frameworks. However, its main limitation is the static nature of the heatmap, which

108 CHAPTER 5. AGORA IMPLEMENTATION

Figure 5.7: HeatmapGoalSelector node combining a spatial heatmap, and a cone-
shaped perception field using a custom shader that adjusts tiling and offset for
accurate agent perception. The resulting composed heatmap is a portion of the
original, reflecting the agent’s environment and location for dynamic goal selection.

5.5. MENGE HEATMAP PLUGIN 109

Input: Agent ID, New State Name
Output: Assigned Goal
function AgentChangedStateCallback(agentID, newStateName)
if newState has external goal selector then

Find matching state node in mengeBFSMSceneGraph
Retrieve HeatmapGoalSelector
Compute agent’s position in 2D heatmap coordinates
newGoal ← getGoal(agentPosition)
Adjust new goal’s position to 3D scene coordinates
Invoke setStatePointGoalForAgent to assign new goal to agent

end
function getGoal(agentPosition)

Create temporary render texture
Blit heatmap and perception field textures using custom shader

Calculate UV ratio and apply agent position as offset
Feed resulting texture to compute shader
Calculate highest value pixel coordinates
Translate pixel coordinates to world coordinates
Instantiate new PointGoal
return new PointGoal

Algorithm 2: Heatmap-based goal selection process.

is defined at the start of the simulation and remains unchanged throughout.
Conversely, the Unity-based implementation, while requiring Unity integration,

offers a more powerful and flexible approach to goal selection. It allows for dynamic
changes to the heatmap during the simulation, providing a more realistic and
adaptable representation of the environment. Additionally, the Unity implementa-
tion benefits from increased performance, utilizing shaders and shader graphs to
efficiently process the heatmap data and accurately determine agents’ goals.

Ultimately, the choice between the Menge-based implementation and the Unity-
based approach depends on the specific requirements and constraints of the crowd
simulation project. Both methods contribute valuable tools for effective goal
selection, enhancing the overall realism and dynamism of agent behavior within the
simulation.

5.5.3 Heatmap Velocity Modifier
The new Menge HeatmapVelocityModifier builds upon the previously described
heatmap functions to effectively guide agents through the environment, as described
in Algorithm 3.

The heatmap class allows projecting agents from world space to heatmap space
and extracting relevant information, such as color values, for the agents’ positions.
The heatmap modifier uses these functions to sample colors from the heatmap at
various points within the agents’ vision field. By doing so, it can determine the
attractiveness or repulsiveness of each sampled location based on the heatmap data.

110 CHAPTER 5. AGORA IMPLEMENTATION

In the context of Menge’s simulation pipeline, the heatmap modifier comes into
play after a goal has been selected and a global plan has been devised to reach
that goal position. The velocity modifier operates on the premise that, while the
global plan provides a general direction for agents to follow, the heatmap modifier
serves as a supplementary guide to influence the agents’ movement decisions. This
additional guidance steers agents around the environment based on the heatmap’s
hot and cold zones, promoting more informed and context-aware navigation.

The adaptPrefVelocity function is responsible for incorporating the heatmap
data into the agent’s preferred velocity. It first checks if the agent has a current
subgoal based on the heatmap; if not, the algorithm samples colors from the heatmap
within the agent’s vision field, calculates scores for these samples, and selects the
highest-scoring point as the new subgoal. Once a subgoal has been established, the
function adjusts the agent’s preferred velocity to move toward the subgoal. This
process allows the agent to smoothly navigate the environment with the influence
of the heatmap data.

By integrating the heatmap into Menge’s existing velocity modifier, the code
enhances the agents’ decision-making process within Menge’s simulation pipeline,
allowing them to better respond to the environment’s hot and cold zones as they
navigate towards their goals.

Data: Agent, Heatmap
Result: Adapted PrefVelocity
if Agent has no SubGoal then

SampleColors ← SampleHeatmapColors(Agent, Heatmap);
SampleScores ← CalculateSampleScores(SampleColors);
SubGoal, SubGoalScore ← SelectHighestScoringPoint(SampleScores);
if SubGoalScore > Threshold then

Agent.HasSubGoal ← True;
end

else
DistanceToSubGoal ← CalculateDistance(Agent.Position, SubGoal);
if DistanceToSubGoal < MinDistanceToSubGoal then

Agent.HasSubGoal ← False;
end

end
if Agent.HasSubGoal then

AdjustedDirection ← SubGoal - Agent.Position;
Agent.PrefVelocity ← AdjustedDirection.normalized() *
Agent.PrefSpeed;

else
end

Algorithm 3: Adapt Preferred Velocity based on Heatmap

5.5. MENGE HEATMAP PLUGIN 111

5.5.4 Heatmap Transition
The ColorCondition class is an essential component of the Agora simulation frame-
work, designed to detect specific conditions based on agents’ positions and their
interactions with a heatmap. This versatile class can be used for various purposes,
such as representing “personal zones” around agents, where specific actions or
behaviors occur once another agent enters the zone.

In conjunction with the Behavior Finite State Machine (BFSM), the ColorCon-
dition class enables state transitions and adaptation of an agent’s behavior based
on their interactions with other agents in their personal zones. These zones can
be marked with unique RGB colors on the heatmap, allowing the ColorCondition
class to detect when agents enter or leave these zones. For example, agents can
change their speed, direction, or goal when another agent enters their personal
zone, resulting in more intelligent and context-aware behaviors that better mimic
real-world interactions.

The class works by storing a reference to the heatmap information and the
desired RGB color for the condition. Its main method, conditionMet, checks whether
the color condition is met by iterating through all the agents in the simulation,
excluding the agent for which the condition is being checked. It calculates the
relative position between the agent and the other agents, projects it onto the
heatmap, and obtains the corresponding RGB color values. If any of the calculated
RGB colors match the specified condition RGB color, the method returns true,
signaling that the condition is met.

By detecting the corresponding RGB color values on the heatmap and allowing
the BFSM to transition between states when the specified color conditions are
met, the ColorCondition class offers a powerful tool for simulating complex agent
interactions and behaviors.

Function conditionMet(agent, conditionColor)
foreach testAgent in simulation do

if testAgent.id ̸= agent.id then
relativePosition ← agent.position - testAgent.position
mapColor ← SampleHeatmapColors(relativePosition)
if mapColor == conditionColor then

return true
end

end
end
return false

Algorithm 4: Checks whether the condition is met by projecting agent positions
onto a heatmap and comparing the obtained colors to the specified condition
color.

112 CHAPTER 5. AGORA IMPLEMENTATION

5.6 OpenCV Evaluator
The OpenCV Evaluator is an essential component of the Agora crowd simulation
framework, designed to assess the performance and accuracy of the simulation
models by comparing them to real-world data. The core concept behind the
evaluator is to generate heatmaps based on arbitrary data from the simulation,
create corresponding heatmaps using real-world data, and then compute a similarity
score by comparing the two heatmaps using image similarity metrics. A higher
similarity score indicates that the simulation model closely replicates the real-world
phenomenon.

The implementation of the evaluator consists of three main components: import-
ing real-world data into the framework and generating heatmaps from it, producing
comparable heatmaps from the simulation, and calculating similarity metrics be-
tween the heatmaps. To facilitate the computation of various image similarity
metrics, OpenCV for Unity is utilized. Furthermore, an evaluation GUI based on
xNode is implemented to streamline the evaluation process.

5.6.1 Positional Data to Heatmap
This section explains the process of generating heatmaps from both real-world and
simulated data using the Agora framework. The purpose of creating these heatmaps
is to evaluate and compare the accuracy of crowd simulation models. By generating
two distinct heatmaps, one for real-world positional data and the other for simulated
data, the effectiveness of the simulation in reproducing actual movement patterns
observed in real-world scenarios can be assessed.

Real World Data. The Agora framework includes an importer component within
its evaluation module, which is designed to handle the conversion of real-world
spatial data, recorded in arbitrary ways, into a suitable format for generating
heatmaps. The importer reads a JSON file containing spatial locations with latitude
and longitude, parses the data into the appropriate format, and creates a spline
representation for each data point. A spline is a smooth curve that passes through
or near a set of control points, which makes it a convenient way to visualize and
potentially modify spatial data. Moreover, the data points can include additional
information, such as orientations and timestamps, which can be utilized to create
more detailed and informative heatmaps for evaluation.

The Agora framework’s evaluation module includes a component that uses spline
representations of real-world paths to generate heatmaps. The component first
verifies if a position from the spline lies within the map boundaries. If the position
is inside the map, it increases the corresponding heatmap location’s value by a
constant amount. After processing all positions, the heatmap is normalized to
ensure that the values range from 0 to 1.

Using splines in this context offers several advantages, particularly when working
with sparse data. For example, if the data being analyzed consists of GPS locations
sampled at relatively long intervals, the splines can help interpolate and substantiate
this data. This interpolation leads to a more comprehensive representation of

5.6. OPENCV EVALUATOR 113

the real-world paths, providing a better foundation for generating heatmaps and
evaluating the accuracy of the crowd simulation models.

Simulated Data. The evaluator module in the simulation framework incorporates
a method for extracting relevant data and turning it into a heatmap using Unity
Events. The simulation manager, a singleton, is responsible for keeping track of
spawned and despawned agents. When a new agent is spawned, a listener can be
added to it, which is triggered whenever the agent performs an action, such as
moving. This allows for updating the respective heatmap cell accordingly.

By simulating a scenario over a determined period, it is possible to generate a
heatmap containing the relevant data. The process involves registering a callback
function that gets triggered whenever an agent moves. As the simulation progresses
and agents move around the environment, the heatmap is updated to reflect the
agents’ movements and locations.

5.6.2 Heatmaps Comparison
In this section, the process of comparing heatmaps generated from real-world and
simulated data to evaluate the effectiveness of crowd simulation models is discussed.
The similarity between the two heatmaps serves as an indicator of how well the
simulation captures real-world movement patterns. A high degree of similarity
suggests that the simulation model accurately represents the observed real-world
phenomenon, while a low similarity indicates that the model may not be performing
well in replicating actual movement patterns.

Numerous methods are available for evaluating image similarity. In this study,
the following methods are chosen for implementation: Mean Square Error (MSE),
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Earth
Mover’s Distance (EMD). Utilizing OpenCV as a tool for heatmap comparison is
advantageous for several reasons. First, OpenCV provides bespoke implementations
for some of the chosen metrics, which streamlines the comparison process. Second,
even for those metrics that OpenCV does not directly implement, the library
simplifies matrix operations, making it easier to develop custom implementations.

By employing these image similarity metrics and leveraging the capabilities of
OpenCV, heatmaps generated from real-world and simulated data can be effectively
compared. This comparison enables the determination of the accuracy of the crowd
simulation models and assesses their ability to reproduce real-world movement
patterns.

Mean Squared Error. The Mean Squared Error (MSE) metric is a widely used
quantitative measure for comparing two images, in this case, heatmaps. The metric
calculates the average squared differences between the corresponding pixel values of
the two images. A smaller MSE value signifies that the two images are more similar,
whereas a larger MSE value indicates greater dissimilarity between the images.

In the context of heatmaps, the MSE is computed by first checking the dimensions
of the input images. If the dimensions are different, a warning is displayed, and an
error value is returned. For images with matching dimensions, the process continues

114 CHAPTER 5. AGORA IMPLEMENTATION

by converting the Texture2D format of the heatmaps into OpenCV Mat objects,
the way that OpenCV stores 2D matrices. The absolute difference between the
corresponding pixel values of the two Mat objects is then computed and squared.
The mean of the squared differences is calculated, resulting in the MSE value.

The raw MSE value is normalized to make it more interpretable. The normal-
ization process involves dividing the raw MSE value by the maximum possible pixel
value and multiplying by 100. The result is a similarity score ranging from 0 to 100,
with higher scores indicating greater similarity between the two heatmaps.

Peak Signal-to-Noise Ratio. The Peak Signal-to-Noise Ratio (PSNR) is a
widely used image quality metric, especially when evaluating the quality of images
or videos that have undergone lossy compression. PSNR is expressed in decibels
(dB) and describes the relationship between the maximum possible power of a signal
and the power of the corrupting noise affecting the fidelity of its representation.

To compute the PSNR, one needs to calculate the Mean Squared Error (MSE)
between two input images and the maximum possible pixel value (e.g., 255 for 8-bit
images). The formula for PSNR is given by:

PSNR = 10 · log10

(
R2

MSE

)
(5.1)

In this formula, R represents the maximum integer value of the image depth,
and MSE is the mean squared error between the two images (which should have
the same type and size).

When comparing heatmaps, the PSNR metric is employed to assess how well a
simulated heatmap matches a real-world heatmap. A higher PSNR value indicates
a better match, as the differences between the two images are smaller. On the other
hand, lower PSNR values suggest a larger discrepancy between the simulated and
real-world heatmaps, implying that the simulation may not accurately capture the
real-world phenomenon. OpenCV has a built-in function for calculating the PSNR
between two images, which is used in the evaluator.

Structural Similarity Index. The Structural Similarity Index Measure (SSIM)
is a method for predicting the perceived quality of digital images and videos. It
measures the similarity between two images, with values ranging from -1 (no
similarity) to 1 (perfect similarity). SSIM is a perception-based model that takes
into account image degradation as a perceived change in structural information,
luminance masking, and contrast masking. Unlike the MSE and PSNR, which focus
on pixel-level differences, SSIM captures the structural, luminance, and contrast
information of the images, making it better suited for evaluating the similarity
between heatmaps, especially when the heatmaps have local and global structures
or patterns that are relevant for the comparison.

The SSIM calculation is based on comparing local patterns of pixel intensities
between two images, using sliding windows. The SSIM index is defined as:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2) (5.2)

5.6. OPENCV EVALUATOR 115

where x and y are windows of the images being compared, µx and µy are the
average pixel intensities of the two windows, σ2

x and σ2
y are the variances of the

pixel intensities in each window, σxy is the covariance of pixel intensities between
the two windows, and C1 and C2 are constants to prevent division by zero.

SSIM is widely used for various applications such as image compression, image
restoration, and pattern recognition. However, it is computationally expensive due
to the need for comparing local patterns using sliding windows.

Earth Mover’s Distance. The Earth Mover’s Distance (EMD) is a measure
of dissimilarity between two probability distributions. It can be used to compare
various types of data, including images, such as heatmaps. In the context of
comparing heatmaps, EMD measures the “minimal work” required to transform
the spatial distribution of intensity values in one heatmap to match the other,
where “work” refers to the product of the mass (or intensity value) being moved
and the distance it is moved. Compared to other metrics that focus on pixel-
by-pixel differences, EMD provides a more intuitive and meaningful measure of
dissimilarity between two heatmaps, as it accounts for the spatial distribution of
the intensity values. This makes EMD more suitable for cases where the relative
spatial distribution of intensity values is of greater importance than individual pixel
differences, such as when comparing heatmaps generated from the simulation with
those encoding real-world data. EMD is computed as follows:

EMD(P, Q) =
∑m

i=1
∑n

j=1 fi,jdi,j∑m
i=1

∑n
j=1 fi,j

(5.3)

Where P and Q are the two distributions being compared, m and n are the
number of points in each distribution, fi,j represents the flow between point i in
distribution P and point j in distribution Q, and di,j denotes the distance between
the two points.

EMD can effectively assess the similarity between two heatmaps by quantifying
the least amount of effort needed to change the distribution of intensity values in
one heatmap to match the other. To calculate the Earth Mover’s Distance between
two images, they must be represented as signatures, which are matrices containing
point coordinates and associated weights. The EMD then measures the minimal
cost of transporting mass (intensity values) from one signature to another, given a
certain distance metric.

OpenCV offers an implementation of EMD that can be used to compare heatmaps
or other types of images, however, the computation of EMD can be computationally
expensive, particularly for large distributions.

5.6.3 Evaluator GUI
In order to make the evaluation process more accessible and user-friendly, an xNode
GUI has been developed. This graphical user interface is designed to facilitate the
comparison of heatmaps through a node-based approach, featuring three main types
of nodes:

116 CHAPTER 5. AGORA IMPLEMENTATION

1. Heatmap nodes: These nodes serve as the fundamental input for the
evaluation process, allowing users to select and input the heatmaps they want
to compare. Heatmap nodes provide an easy way to manage and organize the
data used for evaluation.

2. Combiner nodes: Combiner nodes are particularly useful when dealing with
layered data. In scenarios where the evaluation involves comparing the effects
of multiple stimuli on pedestrian movement or other phenomena, you may
have one heatmap for each stimulus. Combiner nodes allow you to merge
these individual heatmaps, creating a clustered result that can be compared
against the aggregated real-world data.

3. Evaluator nodes: There is one evaluator node for each of the evaluation
metrics discussed earlier. These nodes let users perform the actual evaluation
by comparing the input heatmaps. Each evaluator node features two inputs
for the heatmaps being compared and an additional input for an optional
mask. The mask allows users to focus the evaluation on the relevant portions
of the input heatmaps. A button initiates the evaluation process, and the
output results are displayed on a label and could be plugged into other nodes.
Where possible, the results are normalized and color-coded to provide a clear
visual representation of the similarity between the heatmaps.

5.6. OPENCV EVALUATOR 117

Figure 5.8: The xNode evaluator GUI, showcasing four nodes in action. Two
heatmap nodes represent the real-world data of walking paths and the simulated
paths, respectively. The third heatmap is a mask that defines the relevant parts of
the inputs that are going to be compared. The heatmaps are inputted into an MSE
evaluator node, which calculates a matching score of approximately 65%.

118 CHAPTER 5. AGORA IMPLEMENTATION

Chapter 6

Case Studies

This chapter presents two case studies designed to assess the various features of
the Agora framework and demonstrate its capabilities in simulating crowd behavior
in different real-world scenarios. These case studies serve as practical examples,
illustrating the usability, versatility, and effectiveness of the framework in supporting
the development and evaluation of crowd simulation models.

The first case study, set in Þingvellir National Park, investigates the impact
of visibility on pedestrian navigation while focusing on assessing the convenience
and support provided by the Agora framework in the crowd simulation modeling
process. Additionally, this case study explores the effectiveness of the evaluation
function, specifically the node-based image similarity evaluator. The second case
study, centered on an urban environment, examines the framework’s capabilities in
combining agent behaviors through the integration of guiding heatmaps, specifically
by combining the thermal and density comfort theories. Both case studies aim
to showcase the potential improvements offered by the Agora framework in the
field of crowd simulation and establish its value as a versatile and reliable tool for
researchers and practitioners.

6.1 First Case Study: Þingvellir
This case study aims to examine the usability and versatility of the Agora framework,
by simulating tourists’ behavior in a national park in Iceland, Þingvellir. The
primary objectives of this case study are to investigate the impact of visibility
on pedestrian navigation, to evaluate the accuracy of the simulation model by
comparing the simulated results with real-world data, and to assess the convenience
and improvement provided by the Agora framework in the simulation process.

In this case study, the idea that visibility might affect the way people navigate
the environment is explored, with individuals potentially being more attracted
to visible locations. This concept serves as the basis for developing a simulation
model using an assortment of components tailored to address specific aspects of the
simulation process. The case study aims to showcase the advantages and potential
improvements offered by the Agora framework in the field of crowd simulation by

119

120 CHAPTER 6. CASE STUDIES

applying it to a real-world scenario and comparing the results with those obtained
through traditional methods.

The relevance of this case study to the Agora framework lies in its role as a
benchmark to measure the framework’s capabilities compared to commonly adopted
solutions in the field of crowd simulation. As argued in Section 2.5, researchers
and practitioners often resort to a combination of isolated technologies to develop
crowd simulation models, relying on a specific selection of components from various
sub-fields. To encourage the adoption of the Agora framework, it must demonstrate
its ability to support the development of crowd simulations at least as effectively as
these existing solutions, if not better.

This case study serves as a crucial test for the evaluator component of the Agora
framework. By comparing heatmaps produced by simulations with those derived
from actual real-world data, the quality of the simulation model can be evaluated
using image similarity metrics. This process not only enables the quantification of
the simulation model’s accuracy but also demonstrates the effectiveness and utility
of Agora’s evaluation mechanism in facilitating the creation of realistic simulations.

By applying the framework to a real-world scenario and comparing the results
with those obtained through traditional methods, this case study aims to showcase
the advantages and potential improvements offered by the Agora framework in the
field of crowd simulation.

6.1.1 Unity Native Simulation
This section describes the creation of an ad-hoc crowd simulation model in Unity to
study the impact of spatial visibility on agent navigation within Þingvellir national
park. The process involved acquiring map data and developing software to analyze
visibility and generate heatmaps, which were used to model agent behavior in the
simulation environment using Unity scripts and tools. Notably, this work took place
prior to the development of the Agora framework, and the approach employed can
be considered an early precursor to the general heatmap approach discussed in
the theoretical framework. The resulting simulation model, shown in Figure 6.1,
provides a means to investigate the influence of visibility on agent movement.

The process involved the following steps:

1. Environment Modeling: In order to create a realistic simulation environ-
ment, map data of Þingvellir national park was acquired using OpenMapBox
for Unity. This data provided the graphic environment that hosted the agent
simulation and served as the basis for the visibility analysis. The map data
represented the various walkable zones of the park, including the trails. A
navigation mesh was then created from the walking paths to facilitate agent
navigation within the environment.

2. Visibility Analysis: With the navigation mesh in place, the next step was
to analyze the spatial visibility within the environment. To achieve this,
supporting software was developed for managing heatmaps in relation to
the environment, which included subdividing it into an overlayed grid with
corresponding size, offset, and other parameters. Visibility analysis from the

6.1. FIRST CASE STUDY: ÞINGVELLIR 121

Figure 6.1: Unity native simulation for the first case study, featuring the Þingvellir
environment generated with MapBox. A visibility heatmap, with brighter colors
indicating higher visibility areas, is overlaid on the NavMesh, guiding agent behavior
through a C# script that drives navigation based on a heuristic.

122 CHAPTER 6. CASE STUDIES

space syntax theory [99] was then applied to the navigation mesh, computing
a heatmap that encoded the space based on its visibility. Pixels corresponding
to less visible locations were assigned a darker color, while visible spots were
brighter. This was achieved using raycasts that were iteratively computed
from within the navigation mesh, looking for unobstructed lines of sight. The
analysis essentially calculated how many grid cells were directly visible from
each other grid cell. This information was then used to model agent behavior
in response to the visibility of their surroundings.

3. Agent Behavior Authoring: The agent behavior was modeled using a Unity
C# script designed to control the movement of agents based on the visibility
heatmap. The script periodically sampled the surrounding environment by
generating random points within the agent’s perceptual range, testing their
line of sight, and determining if they are on the navigation mesh. It then
scored these points based on factors such as visibility, angle, and novelty,
selecting the most appealing point as the agent’s destination. The agents
were attracted to more visible locations, and their movement decisions were
influenced by the spatial visibility of the environment.

4. Simulation Scenario and Execution: The final step involved setting up
the simulation scenario and executing the simulation. Agent spawners were
implemented and controlled using spawning curves, which determined the
number of agents spawned at specific times during the simulation. Two main
spawners were placed strategically in the environment to represent tourists
arriving by bus (tours) and those arriving by car (private). These different
arrival methods influenced the agent behaviors, with tour agents having less
time and needing to return to their spawn location before being despawned,
while private agents could linger for longer periods. The agents were visually
represented by simplistic human models, consisting of a floating torso and
head.

6.1.2 Field Study
By collecting information on tourist behaviors and their experiences of overcrowding
and isolation at Þingvellir national park (shown in Figure 6.2), the main goal of
the field study was to better understand how these factors influenced their overall
experience at the park. For more information refer to the published paper [106]
written in collaboration with other members of the Center for Analysis and Design
of Intelligent Agents (CADIA). The field study also served as a valuable source of
real-world data to assess the simulation model developed for the park.

The study was conducted in the following stages:

1. Device Building: A physical device, named Rök, was designed, which
consisted of an Arduino board with a GPS tracker, a memory stick for data
storage, and two buttons to be pressed when the user felt overcrowded or
isolated. The components were enclosed in a 3D printed exterior.

6.1. FIRST CASE STUDY: ÞINGVELLIR 123

2. Data Gathering: Data collection in Þingvellir was carried out based on a
strict onboarding protocol. This included approaching potential participants,
providing an overview of the study, obtaining consent, having them complete an
anonymous demographic questionnaire, explaining the device, and collecting
the device at the end of their visit, followed by an exit interview. The study
was conducted over nine days between July and August 2019, covering the
hours from 10:00 to 16:30, and managed to onboard 66 participants.

3. Analysis: The collected data was processed, analyzed, and visualized. Outlier
detection and removal were performed during the processing step. The primary
analysis, conducted using Python Pandas’ linear regression, revealed a strong
correlation between overcrowding and the number of visitors at the park,
suggesting a relationship between the two factors. Visualization in Google
Earth enabled the creation of informative graphics about the most overcrowded
park areas and the walking trajectories of the participants shown in Figure
6.3.

Figure 6.2: A photo of Þingvellir National Park taken during the field study. On the
left, it is possible to see Almannagjá, the gorge at the edge of the North American
tectonic plate.

124 CHAPTER 6. CASE STUDIES

Figure 6.3: Example of data gathered by the device from a single participant.
The data was processed and visualized in Google Earth, showing the participant’s
walking trajectory and the number of times they felt overcrowded or isolated.

6.1.3 Agora Simulation
The Þingvellir simulation was recreated using the Agora framework once it be-
came available to assess its ability to support the development of practical crowd
simulations. The implementation process can be divided into four main components:

1. Environment Modeling: The environment was set up similarly to the Unity
native simulation using Mapbox for geometry. However, an additional step
was required to convert the Unity navmesh into Menge’s custom format. A
script was implemented to access the underlying triangulated geometry of the
mesh and export it as an OBJ file. The file was then converted using a Python
utility. The mesh required conditioning to fix issues with the underlying
geometry. This process was performed in Blender and involved filling holes,
beautifying faces, and merging vertices by distance.

2. Visibility Analysis: Visibility analysis was conducted in a manner similar
to the Unity native simulation, using iterative raycasts within the navigation
mesh to identify unobstructed lines of sight.

3. Behavior Authoring: Agent behavior was authored using the xNode tool
by creating a behavioral finite state machine that leveraged the generated
heatmap to influence navigation, shown in Figure 6.5. The BFSM consisted of
two states: a “visibility” state, in which agents perceive their surroundings and
select a goal based on the visibility heatmap, and a “random goal” state, in
which agents navigate towards a random point of interest within the Þingvellir
area. These states were connected by transitions that occurred at regular
intervals or whenever agents reached their goals, resulting in a wandering

6.1. FIRST CASE STUDY: ÞINGVELLIR 125

behavior that accounted for both visibility and points of interest. The visibility
state used a heatmap goal selector with two inputs: the Þingvellir visibility
heatmap and the perception field, which limited the agents’ perception field
and allowed them to partially observe their surroundings.

4. Simulation Scenario and Execution: The simulation scenario was created
using the scene specification Unity custom editor, which enabled the speci-
fication of agent spawners similar to those in the native simulation. Agent
profiles with varying parameters could be visually specified.

The resulting working simulation, shown in Figure 6.4, demonstrated the ca-
pabilities of the Agora framework in modeling and simulating crowd behavior in
the Þingvellir National Park practical scenario. Moreover, certain aspects of the
implementation process, particularly behavior authoring, were greatly improved.
For a more comprehensive analysis, please refer to the discussion in Section 6.1.5.

Figure 6.4: Agora simulation of the first case study. The agents’ behavior is
managed by Menge using a BFSM, which leverages the visibility heatmap to
influence navigation. The agents steer towards Almannagjá, the gorge within
Þingvellir National Park which marks the edge of the North American tectonic
plate.

126 CHAPTER 6. CASE STUDIES

Figure 6.5: Simplified view of the BFSM used in the Agora framework imple-
mentation for the Þingvellir scenario, showcasing the state where agents perceive
their surroundings and select goals based on the visibility heatmap. The BFSM is
alternating between visibility and random goal selection.

6.1. FIRST CASE STUDY: ÞINGVELLIR 127

6.1.4 Output Evaluation
In order to evaluate the accuracy of the crowd simulation models developed using
both the Unity native implementation and the Agora framework, the heatmaps
generated by the simulations were compared with the real-world data heatmap
using the Agora evaluation function. This comparison aimed to assess the ability
of each simulation model to replicate the patterns observed in the real-world data,
and to test the evaluation functionality of the Agora framework.

Three heatmap comparisons were conducted, each utilizing metrics mentioned
in Section 5.6 (Mean Squared Error, Structural Similarity Index, Earth Mover’s
Distance, and Peak Signal-to-Noise Ratio):

1. Real World Data Heatmap and Agora Heatmap: assess the accuracy
of the simulation model created using the Agora framework in a real-world
scenario.

2. Real World Data Heatmap and Native Simulation Heatmap: evaluate
the accuracy of the traditionally developed simulation model, serving as a
baseline to determine the success of the Agora framework simulation.

3. Agora Heatmap and Native Simulation Heatmap: This comparison
was carried out to identify the differences and potential improvements offered
by the Agora framework, highlighting a successful recreation of the original
simulation.

Initially, the comparison results reported suspiciously high accuracy, mainly
because most of the resulting heatmaps were predominantly black. The non-
traversable space is much larger than the traversable space, and that portion can
never change between simulation and the real world. Therefore, it was essential
to focus the comparison on the relevant part of the environment. To achieve this,
the evaluations were repeated with a mask as supported by the Agora evaluation
nodes. The mask was a black and white image with white pixels covering only the
traversable parts of the environment. These traversable areas were extracted based
on the navigation mesh, which accounted for roads and trails.

The results, shown in Table 6.1, show that the Agora framework and the native
simulation exhibit comparable performance in replicating the real-world data across
all metrics. Higher values are better for the Mean Squared Error (MSE) and the
Structural Similarity Index (SSIM), both being inverted and normalized. In these
metrics, Agora performs slightly better, especially with masked data in MSE where
it’s nearly 15% better. The values around 50% for MSE and near 80% for SSIM
suggest that both simulations are reproducing more than half of the real-world data
in a very similar manner. The Peak Signal-to-Noise Ratio (PSNR) gives higher
values for better similarity, and we see all values for both methods above 24 dB,
indicating a good level of fidelity in the simulations. The Earth Mover’s Distance
(EMD) is a measure of the distance needed to change one distribution to another.
Lower values here are better, and we see both simulations presenting low EMD
values, particularly with Agora for masked data. In conclusion, while Agora presents
slight advantages in MSE and EMD, both simulations exhibit solid performance

128 CHAPTER 6. CASE STUDIES

Metric RW vs. NH RW vs. AH AH vs. NH
N

o
M

as
k

MSE (%) 98.12 98.76 98.3
PSNR (dB) 24.71 27.93 24.97
SSIM (%) 99.01 99.11 99.16
EMD (pixels) 5.7 10.03 4.47

M
as

ke
d

MSE (%) 49.85 65.43 54.15
PSNR (dB) 27.06 26.68 27.45
SSIM (%) 78.85 79.68 80.39
EMD (pixels) 11.26 9.8 5.79

Table 6.1: Pairwise heatmap evaluation in the Þingvellir scenario, comparing
real-world data (RW), Unity native simulation (NH), and Agora framework im-
plementation (AH) using four metrics for both unmasked and masked heatmaps.
MSE and SSIM are inverted and normalized, with higher values indicating better
similarity. PSNR is measured in decibels, with higher values representing better
similarity, while EMD is a distance metric, with lower values indicating better
similarity between the compared heatmaps.

in replicating real-world data. This implies the Agora framework is a good tool
for crowd simulations, providing similar quality to a native Unity simulation but
potentially more efficiently.

6.1.5 Summary of Results and Discussion
This case study involved conducting a field study in Þingvellir National Park to
gather data on tourist movement patterns, which was then used to develop a Unity
native simulation and an Agora framework-based simulation. The performance and
quality of the two simulations were found to be comparable, with the Agora frame-
work capable of managing 3000 agents at the peak of the scenario. A comparison of
the two simulations allowed for an assessment of their capabilities and limitations.

The Agora framework’s capacity to accurately emulate the native simulation,
while also introducing a layer of convenience and efficiency, was a highlight of the
study. One of the standout features of this framework is its capacity to visually
author behavioral finite state machines that guide agent behavior. This provided a
more straightforward method for modeling agent behavior, utilizing a graphical user
interface to facilitate the integration of the visibility heatmap into the goal selection
component of a state node. The framework’s usability was particularly noticeable in
its capacity to enable the iterative and interactive authoring of different simulation
elements, without the necessity to alter the underlying programming code. The
native implementation, in contrast, depended on scripting to define the behavioral
model. Every required change in this model implied a corresponding adjustment to
the code.

The BFSM in Agora provides a clear separation between the foundational

6.1. FIRST CASE STUDY: ÞINGVELLIR 129

programming and the specification of behavior and scenario, which was entirely
authored through the graphical user interfaces. This separation substantially
reduced the complexity associated with altering behavioral models and scenarios
and resulted in a more efficient workflow. The convenience extended to being able
to dynamically integrate a heatmap, like the visibility heatmap, simply by dragging
it into the BFSM, quickly affecting the goal selection process and nudging agents
towards more visible areas of the environment.

However, as expected, there is a tradeoff between convenience and expressive
power. The native simulation, which relies on a general-purpose programming
language, provides greater flexibility, allowing for a virtually limitless range of
possible operations. This flexibility enables the implementation of more complex
and customized solutions, albeit at the cost of increased complexity.

The native implementation guided agent movement using a heuristic accounting
for multiple factors, including memory, which influenced goal novelty. This aspect
is not yet supported by the Agora framework, which led to the introduction of a
new state where agents aim for random points of interest in the park, encouraging
exploration. While the lack of memory is a limitation, the Agora framework allowed
for the decomposition of the complex heuristic into its fundamental components,
enabling the analysis of each component’s effect on agent behavior.

Furthermore, the Agora implementation was found to be less dependent on the
underlying systems, offering greater modularity. It is possible to switch components,
such as the navmesh for a different global pathfinding algorithm, without affecting
the overall functionality. This modularity is advantageous as it facilitates easier
experimentation with different components, fostering innovation and encouraging
more in-depth analysis of crowd simulation models.

This case study made practical use of the output evaluation functionality of
the Agora framework, highlighting its effectiveness and convenience in assessing
the quality of the simulation model. The user-friendly GUI facilitated a seamless
comparison of heatmaps generated from the simulation with those encoded from
real-world data. The image similarity metrics provided an efficient and convenient
way to gauge the accuracy of the simulation model at a glance, offering valuable
insights into the model’s performance. This evaluation functionality streamlines
the process of refining simulation models, making it easier for researchers and
practitioners to improve their simulations and better understand the underlying
phenomena.

Alongside the objective evaluation provided by image similarity metrics, a more
subjective assessment of the crowd simulations developed with Unity and the Agora
framework also supports their validity in reproducing real-world trajectories.

In the visual examination, both simulations successfully replicated certain
emergent behaviors observed in the real-world scenario. Notably, the simulated
agents exhibited a strong inclination to navigate towards the viewpoint near the
visitor center, a location offering a comprehensive view of the entire park. This
movement pattern mirrors observed behavior in the real-world data, indicating that
the simulations effectively capture key spatial attractors within the environment.

Additionally, agents within the simulations displayed a propensity to explore
their surroundings. This behavior aligns with the known tendencies of real-world

130 CHAPTER 6. CASE STUDIES

park visitors and could be seen as the agents moved through various points of
interest within the park.

In conclusion, the alignment of simulated agent behavior with real-world patterns
provides further support for the accuracy and effectiveness of both the native Unity
simulation and the Agora framework in replicating real-world crowd dynamics.
Thus, in addition to the quantitatively robust performance on image similarity
metrics, the simulations demonstrate qualitative success in portraying realistic
crowd behaviors within the park setting.

6.2 Second Case Study: Urban Environment
The second case study focuses on examining the capabilities of the Agora framework
in relation to combining agent behaviors through the integration of guiding heatmaps.
The primary objective of this case study is to evaluate the effectiveness of this
behavior combination method within the context of the Agora framework, specifically
by combining the thermal and density comfort theories in a simulation of pedestrians
in an urban environment.

A secondary objective is to assess the perceptual impact of the resulting behavior
in a visually immersive simulation. This simulation diverges from the first case study
by implementing high-quality meshes for both the environment and the agents,
creating a more realistic and engaging visual experience. This heightened level of
realism provides an enhanced opportunity to measure how the combined behaviors
exhibited by the agents are interpreted and perceived by observers.

In this case study, rather than developing a new, arbitrary set of theories
influencing human behavior that may yield subjective results, the decision was
made to base the investigation on existing literature. Consequently, the case study
re-implements an existing thermal and density comfort behavior model from Chen
et al. [23], showcasing the feasibility of combining the underlying theories within
the Agora framework, employing the heatmap paradigm for an urban pedestrian
simulation.

The relevance of this case study to the Agora framework is twofold. First,
it serves as an opportunity to validate the framework’s ability to accurately and
effectively combine agent behaviors using heatmaps, as outlined in the theoretical
framework and architecture/implementation chapters. Second, it emphasizes the
practical applicability of the Agora framework, as it demonstrates its capacity to
incorporate established behavior theories, such as thermal and density comfort, from
the literature. By showcasing the framework’s potential to combine and implement
these theories in an urban pedestrian simulation, this case study aims to further
establish the Agora framework as a valuable and versatile tool in the field of crowd
simulation.

6.2.1 Urban Environment
The urban environment of the second case study is built upon the work of Haf-
steinsson [61], which examined the influence of compact urban area design on
people’s psychological well-being as part of the Cities that Sustain Us (CiSuUs)

6.2. SECOND CASE STUDY: URBAN ENVIRONMENT 131

research project [87]. The project was grounded in Restorative Environmental
Design (RED), which explored the relationship between architectural design and
psychological restorative capabilities. Hafsteinsson focused on the automatic proce-
dural generation of high-detail residential street scapes, resulting in a framework
that enabled the creation of realistic cities for users to explore using Virtual Reality
(VR) equipment.

The framework utilized pixel maps (Figure 6.6 top) to describe the environment,
with different layers for features such as roads, buildings, decorations, green areas,
building colors, and other details. The generator filled the environment using various
tiles (Figure 6.6 bottom), including building tiles, road tiles, park tiles, and dirtbed
tiles. An example of an urban environment generated by the framework is shown in
Figure 6.7.

Figure 6.6: (top) Pixel maps describing features of the environment such as buildings
and parks. (bottom) Tiles employed to fill the environment. The image was adapted
from [61].

The framework also included an interface that supported questionnaires, which
could be used while a person experienced the environment in virtual reality. This,
in conjunction with physiological measurements, facilitated the evaluation of the
restorative capabilities of specific urban settings. By modifying pixel maps, re-
searchers could efficiently generate and adjust environments to test the impact of
different aspects on users. Further information about this research can be found in
[71].

132 CHAPTER 6. CASE STUDIES

Figure 6.7: An overview of a possible urban environment generated with Hafsteins-
son’s framework [61]. The image is from the same paper.

6.2.2 Behavior Theories
In this case study, the simulation focuses on people’s reactions to varying levels
of thermal comfort and crowd density, based on the research conducted by
Chen et al. [23]. The authors argue that human behavior is influenced by both
their thermal comfort and the density of others in their environment. As a result,
people may take appropriate actions to increase their comfort, such as relocating to
a less crowded area or adjusting their clothing.

6.2.3 Native Implementation
To model the thermal and density comfort, the authors developed a framework,
shown in Figure 6.8, using an agent map consisting of a uniform grid corresponding
to the 3D simulation environment. Each cell in the grid contains information about
the agents located in it. These agents, acting as moving heat sources, contribute to
a heat transfer model that calculates air temperature alongside other heat sources
or sinks. This temperature map and other environmental factors, such as humidity
and air speed, are used to determine each agent’s thermal comfort level. The agent
map is also utilized to compute a density comfort level based on agent locations,
which is then combined with the thermal comfort map to derive the overall comfort
of each agent.

When agents experience discomfort, they react by either changing their clothing
(affecting individual thermal comfort) or changing their location, based on local
thermal context and nearby agents. A crowd simulator is employed to move the
agents when they need to relocate, and their new positions serve as inputs to update

6.2. SECOND CASE STUDY: URBAN ENVIRONMENT 133

the heat transfer model.

Figure 6.8: The overview of the thermal comfort framework developed by Chen
et al. [23]. The image was adapted from the same paper.

The Thermal Comfort Model

The thermal comfort model employed in the simulation uses the Predicted Percentage
of Dissatisfied (PPD) index, shown in Equation 6.1. This measure is defined by
the ISO standard [1] to quantify the proportion of people likely to feel thermally
dissatisfied within a given environment:

PPDt = 100− 95 · e−0.03353·P MV 4−0.2179·P MV 2
. (6.1)

This index is derived from the Predicted Mean Vote (PMV) model, which
estimates the average thermal sensation of a large group of people exposed to the
same environmental conditions [43]. The PMV model considers several factors and
is computed as shown in Equation 6.2:

134 CHAPTER 6. CASE STUDIES

PMV = (0.303 · e−0.036·M + 0.028)·

(M −W)− 3.05× 10−3 · [5733− 6.99 · (M −W)− pa]

−0.42 · [(M −W)− 58.15]− 1.7× 10−5 ·M · (5867− pa)

−0.0014 ·M · (34− ta)− 3.96× 10−8 · fcl

·[(tcl + 273)4 − (tr + 273)4]− fcl · hc · (tcl − ta)


(6.2)

Where:
M: metabolic rate (W/m2)
W: external work (W/m2)
ta: air temperature (°C)
tr: mean radiant temperature (°C)
fcl: clothing area factor (dimensionless)
tcl: clothing surface temperature (°C)
hc: convective heat transfer coefficient (W/m2·°C)
pa: partial water vapor pressure (Pa)

In the thermal model of the original paper [23], the metabolic rate and the
external work depend on the activity being performed and so are user-provided
parameters, while the remaining variables are computed as explained below. A
complete list of the parameters used in the model is provided in Table 6.2.

Computing the Thermal Comfort Model

(ta) Air Temperature. Is determined using a simplified heat transfer model,
which approximates the complex thermal interactions in the environment by consid-
ering factors such as heat generation, heat consumption, and thermal conductivity:

C
∂T

∂t
= ∂

∂x

[
k(x, y)∂T

∂x

]
+ ∂

∂y

[
k(x, y)∂T

∂y

]
+ Q(x, y, t) (6.3)

Where:
T: Air temperature (�)
C: Air volumetric heat capacity (J/(m3 ·�))
k: Thermal conductivity (W/(m ·�))
Q: Rate of heat generation/consumption (W/m3)

Equation 6.3 models the air temperature by considering the heat generated by
various sources and the heat consumed by sinks, along with the thermal conductivity
of the surrounding media. Each agent is considered a source with constant heat
generation Q0, contributing to the term Q(x, y, t) in the equation. Moreover, a
spatially varying version of thermal conductivity is adopted to approximate the

6.2. SECOND CASE STUDY: URBAN ENVIRONMENT 135

effects of walls and other thermally insulating objects within the environment,
requiring smaller values for k(x, y).

The objective is to determine the temperature value for each location within
the discretized grid of the environment, computed for consecutive time steps. To
achieve this, a simple explicit Euler solution method (with boundary conditions) is
employed, which relies on forward finite differences in time and central differences
in spatial coordinates for approximating the solution to the equation.

(tr) Mean Radiant Temperature. Is a measure of the combined effect of
radiant heat transfer between an individual and the surrounding environment. It
is computed by starting from a base value tr0, accounting for the environmental
factors, and then considering agents that are in close proximity (within intimate or
personal distances), applying the formula in Equation 6.4 to capture the influence
of these nearby agents on the radiant heat transfer.

tr = tr0 + γ
∑

i

ϵ + | cos θi|
d2

i

(6.4)

Where:
tr0: Environmental mean radiant temperature (�)
di: distance between agents
θi: Angle to the i-th intimate distance agent
ϵ: Minimum tr gain for a given distance when θ = 90◦

γ: Weight for controlling the temperature increase

(fcl) Clothing Area Factor. Adjusts the effective surface area of the clothing
based on its insulation value (Icl), as calculated using Equation 6.5.

fcl =
{

1.00 + 1.290 · Icl, if Icl ≤ 0.078
1.05 + 0.645 · Icl, if Icl > 0.078

(6.5)

(tcl) Clothing Surface Temperature. The clothing surface temperature repre-
sents the temperature at the outer surface of the clothing, which is computed using
an equation relating the environment with the clothing, as shown in Equation 6.6.

tcl = 35.7− 0.028 · (M −W)− Icl

·

 3.96× 10−8 · fcl · [(tcl + 273)4 − (tr + 273)4]

+fcl · hc · (tcl − ta)

 (6.6)

Where:
Icl: Clothing insulation (m2K/W) (1 clo = 0.155 m2 ·K/W)

136 CHAPTER 6. CASE STUDIES

(hc) Convective Heat Transfer Coefficient. Describes the heat transfer
between the clothing surface and the surrounding air, which is influenced by the
difference in temperature and the air velocity (va) and is determined by Equation
6.7.

hc =
{

2.38 · |tcl − ta|0.25, if hc > 12.1√va

12.1√va, if hc ≤ 12.1√va

(6.7)

(pa) Partial Water Vapor Pressure. Is a measure of the concentration of
water vapor in the air, determined by taking into account the air temperature and
relative humidity using Equation 6.8.

pa = 10ha · e
16.6536−4030.183

ta+235 (6.8)

Where:
ha: Air humidity (percentage)

By combining all these values, and using them in Equation in 6.1, it is possible to
compute the PPD, which represents the thermal comfort level of the environment.

The Density Comfort Model

A simple model is used to estimate the local discomfort with respect to the local
density of the crowd. Equation 6.9 computes the density discomfort by considering
the number of agents in both intimate and personal spaces described by Hall et al.
[63].

PPDd = 100 · ni + β · np

Mi + β ·Mp
(6.9)

Where:
ni: Number of agents in the intimate space
np: Number of agents in the personal space
Mi: Maximum number of agents in the intimate space
Mp: Maximum number of agents in the personal space
β: Decay factor for the personal space

The Combined Comfort Model

To generate the combined PPDc, a simple linear weighted average is used.

PPDc = α · PPDt + (1− α) · PPDd (6.10)

Where:
α: Blend factor (0 ≤ α ≤ 1)
PPDt: Thermal PPD (from Equation 6.1)
PPDd: Density PPD (from Equation 6.9)

6.2. SECOND CASE STUDY: URBAN ENVIRONMENT 137

6.2.4 Agora Implementation
The primary objective of the study was to evaluate the Agora framework with a
focus on the quality of the combined behavior that results from integrating different
factors using the heatmap blending technique. By replicating the implementation
of the original paper, a solid foundation in the literature was established, ensuring
that the approach was grounded in well-established theories rather than arbitrary
concepts.

In this context, the heatmap paradigm was applied to the thermal and density
comfort models, generating the corresponding heatmaps to represent the discomfort
levels in both aspects. This allowed the xNode BFSM heatmap combiners in the
Agora framework to effectively blend the thermal and density heatmaps, producing
a combined behavior that was influenced by both comfort models.

As previously mentioned, the scene consisted of an urban environment created
with the framework from [61], resembling the one depicted in Figure 6.7. To employ
the heatmap approach, the environment was divided into a uniform grid of 500x500
world units, as illustrated in Figure 6.9. The size of each cell could be easily modified
to strike a balance between the granularity of the heatmap and computational
performance, considering that some heatmaps required calculations for each cell.

Figure 6.9: The top-down isometric view of the urban environment of the second
case study, with the heatmap grid overlaid.

138 CHAPTER 6. CASE STUDIES

The following sections will give an overview of the heatmaps generated for the
thermal and density comfort models, as well as the combined heatmap generated
by the Agora framework.

How to interpret the heatmaps:

Size: Each heatmap has a size of 500 x 500 world units, with a cell size of
1 world unit. In Unity 1 world unit corresponds to 1 meter. The timestep
(where applicable) is 0.1 seconds.

Color: To avoid confusion, every heatmap has been shaded with the same
grayscale gradient linearly ranging from black to white, with black representing
the lowest value and white representing the highest value.

Boundaries: Areas marked with diagonal lines represent “void” areas, which
are effectively considered “outside the environment”. Though these cells
also have values, and in some cases even influence the surrounding locations,
diagonal lines have been used (in this dissertation) for visualization purposes to
provide a clearer graphical context of the “empty space” within the simulation.
This distinction helps to emphasize the difference between the active areas of
the environment and the empty spaces beyond its boundaries.

Parameters: The complete list of parameter values used for generating the
heatmaps is provided in Table 6.2.

Thermal Comfort Heatmaps

This Section presents an overview of the various heatmaps involved in the simulation
of thermal comfort. These heatmaps encompass thermal conductivity, thermal
generation, air temperature, thermal comfort, and density comfort maps. The
thermal conductivity and thermal generation maps are employed for calculating
the air temperature map, which in turn serves as an input for determining thermal
comfort.

Thermal Conductivity Heatmap. The thermal conductivity heatmap repre-
sents the distribution of thermal conductivity throughout various regions of the
environment, primarily accounting for two materials: air and concrete. Lower values
were assigned to areas occupied by buildings to simulate their insulating properties.
In order to generate the heatmap, a downward box cast was performed for each
cell in the grid. A box cast1 is a Unity physics function that projects a box-shaped
volume along a specified direction, checking for collisions with other objects in the
environment. When a box cast intersected a collider associated with a building
game object, the cell was assigned a lower value, indicating insulation. In cases
where no intersection occurred, the cell was considered “open air” and had higher
thermal conductivity.

1https://docs.unity3d.com/ScriptReference/Physics.BoxCast.html

6.2. SECOND CASE STUDY: URBAN ENVIRONMENT 139

Name Unit Original Agora
a thermal conductivity W/m·℃ N/A 0.001-0.024

b
heat rate W/m2 81-1630 155
heat radius meters 0.2 3

c
initial air temperature ℃ 21-25 20
volumetric heat capacity J/m3·℃ N/A 1206

d

metabolic rate W/m2 1.9-3.4 2.4
clothing insulation m2·℃/W 0.4-1.2 1.2
air velocity m/s 0.1-0.5 0.2
relative humidity % 40 30
env. mean radiant tempera-
ture

℃ 25 23

min. radiant temperature ℃ 0.5 0.1
temperature increase weight units 0.1 0.5

e
personal space importance units 0.2 0.5
max. intimate agents 6 4
max. personal agents 12 12

Table 6.2: Comparison of the models’ parameter values between Agora and the
original implementation [23]. The parameters are grouped by their pertinence to
various parts of the comfort model: (a) thermal conductivity, (b) thermal generation
(c) air temperature, (d) thermal comfort, and (e) density comfort.

140 CHAPTER 6. CASE STUDIES

Figure 6.10 shows the resulting heatmap. Since the difference between the values
is very significant, the open-air areas are shaded in white, while the buildings are
shaded in black.

Figure 6.10: The thermal conductivity heatmap for the urban environment used in
the second case study.

Thermal Generation Heatmap. The thermal generation heat map provides an
instantaneous representation of the heat generation or consumption rate (W/m3)
caused by heat nodes (sources or sinks) in the environment. In the simulation, each
game object that represents a heat node has an attached script containing data
regarding the heat generation rate and the affected radius. If the heat generation
rate is positive, the node acts as a heat source, whereas a negative rate indicates a
heat sink. For every heat node hn(x, y) in the simulation, where (x, y) denotes the
position of the heat node, the thermal generation heatmap adds the heat generation
rate value to all cells surrounding the (x, y) center within the specified radius.
Figure 6.11 displays a sample thermal generation heatmap for the simulation, with
the only heat nodes (sources) being the agents moving throughout the environment2.
The color variation is due to overlapping heat source radii, which increase the local

2This is a simplification but additional sources can easily be added.

6.2. SECOND CASE STUDY: URBAN ENVIRONMENT 141

heat generation.

Figure 6.11: The thermal generation heatmap for the urban environment used in
the second case study.

Air Temperature Heatmap. The air temperature map is simulated using a 2D
diffusion model formalized in Equation 6.3. This equation is a partial differential
equation (PDE) that models how the temperature changes over time based on
the spatial distribution of temperature and thermal conductivity. PDEs involve
derivatives with respect to multiple variables and necessitate specialized techniques
for finding solutions.

As described in Section 6.2.3, a simple explicit Euler method is employed to
numerically solve the PDE, approximating the solution by discretizing the spatial
and temporal domains. Forward finite differences for time and central differences
for spatial coordinates are employed in this method. In this context, forward finite
differences refer to estimating the rate of change in time by considering only the
future time step, while central differences involve estimating spatial derivatives
based on the average of the nearby points in the discretized space.

For instance, the first-order partial derivative of temperature with respect to x
(∂T/∂x) is approximated by computing the difference in temperature values at x−1

142 CHAPTER 6. CASE STUDIES

and x + 1, and then dividing it by the distance between these points. This approach
is applied to all spatial derivatives in the equation to estimate their values.

Once the spatial derivatives have been approximated, the temperature change
at each grid point can be determined. The explicit Euler method then updates the
temperature by adding the calculated temperature change to the current temperature
value, multiplied by the time step. This process is iterated over time to simulate
the diffusion of heat in the environment.

Algorithm 5 shows the central steps of the computation for applying the numeri-
cal solution to the PDE. For the sake of conciseness, only the necessary parts of the
numerical solution are computed, while some intermediate computations are skipped.
For example, the central difference approximation ∆T Right

x ← T (x+2,y)−T (x,y)
2h uses

a +2 index because it is required for approximating the outer derivative, the inner
derivative approximation is skipped.

Apply boundary conditions:
for each boundary point do

set boundary temperature
end
Loop through the interior grid points:
for each interior point (x, y) do

Approximate temperature derivatives:
∆T Right

x ← T (x+2,y)−T (x,y)
2h

(similar calculations for Left, Up, and Down)
Calculate k ·∆T :
k∆T Right

x ← k(x + 1, y) ·∆T Right
x

(similar calculations for Left, Up, and Down)
Approximate diffusion derivatives for x and y:
∂

∂x (k∂T/∂x)← k∆T Right
x −k∆T Left

x

2h

∂
∂y (k∂T/∂y)← k∆T Up

y −k∆T Down
y

2h
Update the temperature:
Tnew(x, y)← T (x, y) + ∆t · (∂

∂x (k∂T/∂x)+ ∂
∂y (k∂T/∂y)+Q)

Cv

end

Algorithm 5: Numerical Solution of the 2D Heat Diffusion Equation. Variables:
h - space delta; T - temperature; k - thermal conductivity; Q - heat generation;
Cv - volumetric heat capacity; ∆t - time step.

A heatmap of the air temperature, as produced by the algorithm, is displayed in
Figure 6.12. Given that the temperature range is not fixed, a min-max normalization
approach has been employed in the heatmap representation. Consequently, darker
areas in the heatmap correspond to locations with the lowest temperature, while
brighter areas indicate locations with the highest temperature. Throughout the
simulation, the actual temperature range spanned from 20 to 30 �.

6.2. SECOND CASE STUDY: URBAN ENVIRONMENT 143

Figure 6.12: The air temperature heatmap for the urban environment used in the
second case study.

144 CHAPTER 6. CASE STUDIES

Thermal Comfort Heatmap. The thermal generation heatmap and the air
temperature heatmap are the two spatial maps required for computing the thermal
comfort model. Once these maps are generated, Equation 6.2 can be applied to
compute the predicted mean vote, which represents the thermal sensation and
typically ranges from -3 (cold) to 3 (hot). To further generalize this index, the
predicted percentage of dissatisfied agents in the thermal environment can be
calculated using Equation 6.1, yielding values that range from 0 (all agents are
satisfied) to 100 (all agents are dissatisfied). The PPD heatmap is illustrated in
Figure 6.13, with darker areas denoting locations in the environment where most
agents are thermally satisfied, and brighter areas indicating locations that are
dissatisfactory due to being either too cold or too hot.

Figure 6.13: The thermal comfort (PPD) heatmap for the urban environment used
in the second case study.

Density Comfort Heatmap

The density comfort heatmap evaluates the comfort levels related to the spatial
distribution of agents within the environment. It is computed as described in
Section 6.2.3 using Equation 6.9. Figure 6.14 displays a possible heatmap resulting
from this computation. The most densely populated locations correspond to park

6.2. SECOND CASE STUDY: URBAN ENVIRONMENT 145

tiles designated as goals for the agents, leading to frequent gatherings and bright
spots on the heatmap, which signify density discomfort. In contrast, the majority
of the locations where agents walk exhibit less brightness, indicating lower density
discomfort. Nevertheless, some congested roads are still clearly visible as areas with
higher brightness, denoting locations where agents walk in close proximity to one
another, thus experiencing greater density discomfort.

Figure 6.14: The density comfort heatmap for the urban environment used in the
second case study.

Agent Behavior

In the original model, the agent behavior is influenced by the combined comfort level,
which is a weighted average between the thermal comfort and the density comfort
levels, as described by Equation 6.10. The α parameter adjusts the significance of
the density stimulus compared to the thermal stimulus. In the Agora framework,
this is achieved through color operations. Figure 6.15 illustrates an example of the
simulation running in the Agora framework, where the agents are moving around
the environment to balance their thermal and density comfort levels.

The density and thermal comfort heatmaps are calculated for every cell in the
discretized environment at each time step, and subsequently, they are employed

146 CHAPTER 6. CASE STUDIES

Figure 6.15: Example of the second case study simulation running in the Agora
framework. The comfort heatmap is overlayed on the ground.

as dynamic heatmap nodes in the behavioral finite state machine, as shown in
Figure 6.16. This figure illustrates a portion of the BFSM responsible for regulating
agent behavior. From left to right, two dynamic heatmap nodes encode the density
comfort and thermal comfort levels of each location within the environment. As these
heatmaps are single-channel textures, the values they contain are represented by
the red channel, resulting in a red and black color scheme. Since PPDt and PPDd

indicate the level of discomfort, the heatmap undergoes an inversion operation
to convey the level of comfort. Following this, the two inverted PPD values are
combined using a Heatmap Average Combiner node, which computes the weighted
average of multiple textures based on a set of weights. This operation generates
a combined comfort level PPDc equivalent to the one determined in the original
model. Lastly, the resulting heatmap is utilized by a heatmap goal selector, which
applies a mask to perceive a portion of the surrounding environment and selects
a goal based on the most attractive location within that area. This goal is then
incorporated into the agent state, effectively influencing their behavior.

Agora Addition: Shadow-seeking behavior

To further show the adaptability of the Agora framework, a unique shadow-seeking
behavior was incorporated, aligned with the existing thermal comfort model. This
involved generating a new dynamic heatmap, informed by the changing position of
the sun within the scene, effectively capturing the environmental shadows.

This was accomplished by utilizing an orthographic camera to render a top-down
perspective of the urban environment. The camera was set to cull all but the shadow
cast by objects within the environment, resulting in a heatmap. As shown in Figure

6.2. SECOND CASE STUDY: URBAN ENVIRONMENT 147

Figure 6.16: Portion of the BFSM modeling density and thermal comfort as dynamic
(GPU) heatmaps influencing agent behavior. The stimuli are combined using a
weighted average node.

148 CHAPTER 6. CASE STUDIES

6.17, this heatmap dynamically encodes regions of the environment into shaded
areas (low values) and sun-exposed spaces (high values).

Subsequently, the heatmap was inverted and incorporated into the Behavioral
Finite State Machine. This intuitive process underscores not only the simplicity
of adding novel features to the simulation but also the convenience with which
the original model can be expanded to incorporate a myriad of other stimuli.
It highlights the Agora framework’s capacity for flexible and intuitive behavior
modeling, solidifying its position as a versatile tool for complex crowd simulation
tasks.

Figure 6.17: Shadow-seeking behavior conveniently added to the Agora simulation.
The associated heatmap visually represents the impact of the sun’s shifting position
on the distribution of light and shadows within the environment. In response to
these changes, the simulation’s agents actively seek out shadowy areas to avoid
exposure to the sun and high-temperature zones.

6.2. SECOND CASE STUDY: URBAN ENVIRONMENT 149

6.2.5 Summary of Results and Discussion
The second case study aimed to evaluate the performance of the heatmap-based
behavioral combination mechanism within the Agora framework and to demonstrate
the framework’s ability to integrate established simulation models. To achieve this,
the work of Chen et al. [23] was replicated and an implementation using the Agora
framework was provided.

The original study suggested that individuals exhibit behavioral responses to
thermal and density stimuli by attempting to maintain a balance of comfort between
the two factors. The authors of the original study modeled this phenomenon by
calculating the thermal comfort level (PPDt) and density comfort level (PPDd),
and conducted agent simulations in two distinct scenarios. The resulting simulations
exhibited plausible agent behaviors under varying density and thermal conditions.
For instance, agents were observed to move into areas with higher occupant density
to enhance thermal balance or to spontaneously distance themselves from a group
of people in order to increase comfort levels.

In replicating the original work within the Agora framework, a significant shift
in the paradigm was achieved. This new approach introduced the utilization of
heatmaps for influencing agent behavior, offering a powerful and intuitive method
for representing complex environmental stimuli. Moreover, the framework facilitated
color-based combinations, which allowed for the seamless integration of multiple
behaviors, providing a more comprehensive understanding of agent interactions
with their environment.

The Agora framework also introduced convenient nodes that can be easily plugged
together in the BFSM, streamlining the process of authoring behaviors. The suite
of features provided by the Agora framework in support of the crowd simulation
process significantly reduced the time and resources required for implementation,
making the entire process more efficient and user-friendly. This approach further
enhances the flexibility and adaptability of the framework, enabling the efficient
creation and testing of a wide range of behavioral scenarios.

By incorporating these features, the Agora framework not only successfully
replicated the original model but also showcased its potential for contributing to the
field of agent-based simulations. This is illustrated by the effective integration of
heatmaps representing underlying stimuli, which facilitates the blending of multiple
behavior theories within the framework.

In comparing the Agora framework with the original work, it is essential to high-
light both the limitations and the improvements introduced. One notable limitation
is that the simulated agent responses to discomfort in the implemented model are
simpler than in the original work. While agents in the original implementation can
change clothes to regulate their temperature, agents in the Agora framework can
only navigate to locations that offer greater comfort levels. Despite this limitation,
the Agora framework introduces a range of advancements that enhance performance,
versatility, and ease of use.

The original work suggests that the model’s computational complexity scales
linearly with respect to the discretized grid dimensions, implying that it would
not impose a heavy performance burden on the overall simulation. Nevertheless,
it was observed that in the Agora framework, simulating large environments or

150 CHAPTER 6. CASE STUDIES

using very small delta times could significantly hinder the model’s performance.
To address this issue, the thermal comfort model processing was re-implemented
using Unity compute shaders3, enabling parallel computation on the GPU. As a
result, the simulation runs at a frame rate between 30-120 FPS, greatly improving
performance.

Since the original work uses the ADAPT platform [130] as a crowd simulator,
it is fair to assume that the proposed framework is characterized by the same
strengths and limitations. For instance, it lacks compatibility with custom navigation
mechanisms and doesn’t offer any support for external configuration, making it
difficult to compare models and explore novel functionality. Nevertheless, it’s worth
reiterating that the authors claim that the crowd simulator component can be easily
changed. These limitations are discussed more in-depth in Section 2.3.1 and in [32].

In contrast, the Agora framework, based on Menge, addresses these limitations
by offering native support for various pathfinding techniques and obstacle avoidance
algorithms. This makes it easy to assess their impact on the simulation and to design
different scenarios using Menge’s custom specification files and Agora’s convenient
authoring GUIs. Consequently, the Agora framework allows for more convenient
comparison and result dissemination.

Furthermore, Agora’s heatmap-centered approach enables the easy integration
of additional behavioral stimuli. For instance, a heatmap representing the influence
of light and shadows on air temperature can be easily generated and incorporated
into the node combination pipeline, enhancing the thermal comfort computation.
Similarly, the visibility mapping computation method from case study one (Section
6.1) can be repurposed to guide agents toward more visible locations. This feature
expands the range of possible behavioral combinations and offers a more powerful
tool for agent-based simulations and behavioral analysis.

In conclusion, while there are some limitations when comparing the Agora
framework to the original work, the advancements introduced by Agora in perfor-
mance, versatility, and ease of use provide a more powerful and flexible platform
for agent-based simulations and behavioral studies.

3https://docs.unity3d.com/Manual/class-ComputeShader.html

Chapter 7

Discussion

7.1 Main Results Summary
This research contributes to the field of crowd simulation by addressing critical lim-
itations, developing a comprehensive theoretical framework, designing the software
architecture, and implementing Agora, which has been assessed through two case
studies. The key outcomes of this work are as follows:

1. Literature Review: This dissertation presents a review of the primary
driving fields that have propelled innovation in the crowd simulation domain.
Furthermore, it reveals the issue of fragmentation and characterizes it through
a novel formalization, emphasizing the need for a framework that facilitates
the combination of behavioral models to advance the field.

2. Theoretical Framework: Stemming from the literature review, a shift
towards a novel stimulus-centric approach to crowd simulation is proposed.
An innovative theoretical framework is designed that utilizes the heatmap
paradigm for modeling stimuli that influence human reasoning and, conse-
quently, agent behavior. The advantages and limitations of this new paradigm
are explored, and the necessary rules and operations for working with this
paradigm are defined: color operations for combining heatmaps; and three
different ways of leveraging heatmaps for influencing agent behavior (goal
selection, trajectory adjustment, and local steering). Finally, the theoreti-
cal foundation of techniques for leveraging heatmaps for calibrating model
parameters and evaluating simulation output is proposed.

3. Software Architecture: The theoretical framework is formalized into a
software architecture adhering to sensible architectural principles to ensure
that the resulting framework can support the modeling of crowd simulations in
several scenarios. As a result, the main critical components for the separation
of concerns within the framework are defined.

4. Agora Implementation: Based on the aforementioned requirements, suit-
able selections of practical components are made, identifying ideal choices for

151

152 CHAPTER 7. DISCUSSION

each of the architectural critical components. These practical components
are extended and integrated, resulting in the implementation of the Agora
framework. The overall backbone of Agora comprises the integration between
Unity 3D and Menge, which collectively address the authoring, simulation,
visualization, and evaluation aspects of the crowd simulation process. Unity
3D provides a set of tools for creating, editing, and rendering complex envi-
ronments and characters, while the Menge crowd simulator offers a flexible
platform for modeling and simulating agent behaviors in various scenarios.
The combination of these two systems results in a comprehensive framework
capable of addressing the challenges of crowd simulation.

5. Case Studies: The Agora framework’s capability of supporting crowd sim-
ulations modeling and adhering to the previously mentioned architectural
principles is tested with two case studies. Specifically, the first case study high-
lights the potential for objective evaluation of crowd simulations by comparing
aggregate simulated agent trajectories with their real-world counterparts.
In contrast, the second case study demonstrates plausible agent behaviors
under varied density and thermal contexts combined in a holistic model. This
underscores the capability of the software architecture and implementation to
support the development of crowd simulation.

7.2 Answers to Research Questions
The focus of this research has been on addressing the fragmentation and limited
interoperability of existing crowd simulation models. Although the field of crowd
simulation has seen significant advancements, a unified approach that enables
the seamless integration and combination of multiple behavior models is still
lacking. This fragmentation poses challenges for creating more accurate and realistic
simulations of human behaviors and complicates the fair comparison and evaluation
of different models. Furthermore, the closely tied nature of behavior models to
their underlying components and technologies, such as global pathfinding and local
obstacle avoidance exacerbates the problem. The primary objective has been to
develop a framework that can effectively combine diverse crowd simulation models,
facilitate meaningful comparisons, and support the creation of more comprehensive
and accurate simulations of human behavior in various scenarios and environments.

To address these challenges, Agora, a novel framework that leverages heatmaps
for modeling agent behaviors, has been developed and evaluated through two
comprehensive case studies. In light of the gathered results, the following discussion
will address the research questions that guided this study, providing insights into
the strengths and limitations of the proposed framework and its implications for
the field of crowd simulation.

R.Q. I: What are the potential theoretical and technical challenges and limita-
tions involved when attempting to integrate fragmented behavior models in crowd
simulations?

7.2. ANSWERS TO RESEARCH QUESTIONS 153

Theoretical Challenges. The theoretical challenges concerning the combination
of several behavior models can be partly attributed to the predominant rule-centric
approach in behavior modeling, as opposed to a stimulus-centric one. In the rule-
centric approach, behaviors are typically defined by a set of rules or algorithms that
dictate agent responses in specific situations. One of the core issues in combining
rules is that they are fundamentally semantical constructs, making it difficult to
establish a clear and universally applicable method for combining them, especially
when they are contradictory.

However, it is important to acknowledge that rule-based approaches have their
own merits, such as a potentially higher expressive power, as rules can capture
more nuanced and context-specific behaviors. Nevertheless, this expressiveness may
come at the cost of reduced flexibility and modularity when attempting to integrate
different behavior models.

On the other hand, a stimulus-centric approach focuses on the factors that
influence the behaviors, rather than the specific rules governing the responses. With
this perspective, stimuli can be more easily combined or modified using well-defined
operations, such as color operations for heatmap-encoded stimuli. This enables
a more flexible and modular framework for behavior modeling, allowing for the
seamless integration of diverse behavior models in crowd simulations.

As shown by the two case studies (Chapter 6), by shifting the focus to the
underlying stimuli that drive agent behavior, it becomes possible to create a more
unified and versatile approach for integrating diverse behavior models in crowd
simulations. This ultimately addresses the limitations posed by the rule-centric
perspective while still acknowledging its strengths in capturing nuanced and context-
specific behaviors.

Technical Challenges. The technical challenges in integrating fragmented be-
havior models in crowd simulations arise from the absence of a unified abstraction
interface for implementing and combining behaviors. Each model is typically imple-
mented directly on top of a specific stack of underlying components, such as the
navigation system, and may require unique sets of data or expect the data to be
provided in a particular format. These assumptions make it difficult to support
multiple models in the same implementation without investing significant time and
effort in adapting and integrating the models or the underlying systems.

Section (2.3) explained how some of these challenges have been partially ad-
dressed by crowd simulation frameworks that abstract and generalize the lower-level
aspects of agent navigation within the environment. However, this remains an
open challenge for higher-level behaviors, which are still not generalized and are
closely tied to the underlying stacks of components. The native implementation
of case study one exemplified these challenges in integrating higher-level behaviors
(Sections 6.2.3 and 6.1.5).

By contrast, modeling behavior based on a central abstraction, such as the
heatmap paradigm proposed in this research, allows for establishing a more unified
and flexible way of combining diverse behavior models. This central abstraction
can help overcome the limitations imposed by the tight coupling of higher-level
behaviors to specific components and technologies, allowing for more seamless

154 CHAPTER 7. DISCUSSION

integration and combination of multiple behavior models in crowd simulations.
As demonstrated in the case studies, the Agora framework effectively utilizes the
heatmap-based abstraction to address the challenges associated with integrating
fragmented behavior models in crowd simulations.

R.Q. II: What paradigm can be employed to enable the seamless integration and
combination of multiple behavior models in crowd simulations?

One paradigm that can be employed to foster the combination of behaviors is
the heatmap paradigm. A heatmap is a graphical representation of spatial data
that uses color intensity to indicate the magnitude of a variable, enabling the
visualization and analysis of complex patterns, relationships, or behaviors within
an environment. By adopting the heatmap paradigm, the focus shifts from a rule-
centric to a stimulus-centric approach, which is beneficial for combining multiple
behaviors into a more holistic model.

Key advantages of the heatmap paradigm contribute to its suitability for ad-
dressing the challenge of combining behavior models. First, heatmaps provide a
unified method for encoding data related to various aspects of human behavior,
allowing for easier integration of diverse models. Moreover, each behavior model is
defined within a self-contained layer, encapsulating the necessary data for modeling,
which can be enabled or disabled without impacting other simulation components.

The consistent format of behavioral information in heatmaps allows for the
efficient combination of different heatmaps using color operations. This approach
not only simplifies the integration process but also fosters adaptability by accom-
modating multiple models for different aspects of behavior and consolidating the
resulting information into a single data structure. Furthermore, the graphical
nature of heatmaps enables efficient processing through parallel GPU computing,
enhancing simulation performance.

Applying the heatmap paradigm to both case studies (Chapter 6) demonstrates
its potential for addressing the challenge of combining fragmented behavior models.
By adopting this paradigm, the challenges associated with fragmented behavior
models can be tackled, paving the way for more comprehensive and accurate
simulations of human behavior in crowd simulations.

R.Q. III: Given a suitable paradigm for integrating multiple behaviors, what are
the critical components and architectural principles that should be considered when
designing and implementing a system that leverages this paradigm?

Architectural Principles. As argued in Section 4.1, the following key architec-
tural principles should be considered:

1. Usability: A user-friendly interface is crucial to ensure accessibility for users
with varying levels of experience, reduce barriers to entry, and facilitate
collaboration among multiple parties.

7.2. ANSWERS TO RESEARCH QUESTIONS 155

2. Modularity: Implementing a modular design is essential for adapting the
framework to different domains and scenarios, enabling customization, and
facilitating the addition of new features and functionalities.

3. Scalability: The framework must accommodate varying levels of complexity
in simulations by adjusting the level of detail in various aspects, from graphical
elements to behavioral components, ensuring applicability across diverse
scenarios and efficient simulation of complex crowd behaviors.

4. Versatility: The system should foster meaningful model comparisons, be-
havior combination, reusability, and collaboration, contributing to coherence
and consensus within the field, and promoting innovation and collective
advancements.

Critical Components. Based on the architectural principles, the following
critical components should be supported:

1. User Interface: Enables efficient editing and management of environment,
agent behavior, and visualization options, enhancing usability.

2. Data Handler: Manages seamless data flow and conversion, contributing to
overall versatility.

3. Crowd Generator: Produces diverse, realistic crowds, addressing scalability.

4. Crowd Simulator: Runs simulations based on user-defined parameters,
enhancing framework versatility.

5. Visualizer: Renders simulations in a visually accessible manner, addressing
usability.

6. Evaluator: Assesses and validates simulation outputs, fostering continuous
improvement and addressing usability and versatility.

7. Plugin System: Facilitates development and sharing of custom plugins,
promoting modularity and versatility.

These components provide a comprehensive approach to crowd simulation,
ensuring a clear separation of concerns and laying a solid foundation for a robust
and adaptable framework to meet diverse needs in crowd simulation and analysis.
Importantly, the architecture has proved successful in supporting the combination
of crowd simulation models in the two case studies presented in this dissertation.
This demonstrates the effectiveness of the proposed principles and components in
achieving a flexible, adaptable, and robust crowd simulation framework.

R.Q. IV: How can the integration of multiple behavior models contribute to
improved realism and accuracy in representing human behaviors and interactions in
crowd simulations?

156 CHAPTER 7. DISCUSSION

Human behavior is multifaceted, and no single model can capture its complexity.
As seen in the literature (Section 2.5), the divide-and-conquer approach adopted by
the field of crowd simulation has allowed researchers to focus on more manageable
issues and contained behaviors, resulting in significant advancements. However, real
human beings account for many different factors in their reasoning and behavioral
processes, highlighting the need for integrating multiple behavior models.

The integration of multiple behavior models leads to a more holistic and realistic
portrayal of human behavior in crowd simulations. By leveraging the strengths of
different models, simulations can benefit from a comprehensive understanding of
human behavior and its various influencing factors. Combining multiple models can
also help reduce inherent limitations and biases that individual models may possess,
leading to a more balanced and accurate representation of human behavior.

For instance, in the case study two (Section 6.2) involving the combination of
two comfort models, emergent behaviors were observed that closely resembled those
described in the original work [23]. Agents demonstrated plausible behaviors under
varied density and thermal contexts, adjusting their movements to improve thermal
balance or seek density comfort. Such outcomes would not have been possible if
only one of the stimuli were modeled. As demonstrated in the referenced section,
Agora generalizes this combination of stimuli, representing an advancement over
the current state of the art.

R.Q. V: How can objective evaluation methods be devised to assess the realism
of various crowd simulation models, while maintaining a balance between evaluating
individual behaviors at a local level and their wider interactions in diverse scenarios
and environments?

Evaluation methods can be classified into two categories. Microscopic methods
focus on individual agents by comparing single variables, such as individual trajecto-
ries. Conversely, macroscopic methods are based on completely aggregate data, such
as the overall crowd density/velocity ratio, which is compared to the fundamental
diagram.

Heatmap-based evaluation techniques offer a balanced approach that addresses
the challenges of both microscopic and macroscopic evaluation. By providing a
graphical representation of spatial data, heatmaps indicate the aggregated magnitude
of a variable. Thus, comparing simulation-generated heatmaps with their real-world
counterparts enables an indirect balance between microscopic and macroscopic
evaluation. This approach shares similarities with the work on trending paths [146],
which clusters trajectory data to produce aggregate trajectories for more robust
and meaningful comparisons.

Although the trending paths method employs more advanced techniques, such
as Bayesian inference for learning patterns, heatmaps offer similar benefits with a
simpler approach. Furthermore, they facilitate the use of well-established image
similarity metrics, which can effectively assess the difference between simulated
and real-world data. These metrics help to strike a balance between micro and
macroscopic evaluation by adjusting parameters, such as the sliding window size in
the case of the Structural Similarity Index (SSIM). A smaller window size focuses

7.3. ADVANTAGES AND LIMITATIONS 157

on local differences, capturing fine-grained details and discrepancies, while a larger
window size considers broader structural similarities and is less sensitive to local
noise or small variations.

Additionally, the heatmap approach is stimulus-centric, with each behavioral
stimulus encapsulated in its layer. This enables the evaluation of both individual and
combined stimuli against real-world data, providing insights into their contributions
to the overall behavior. This is exemplified by the application of the implemented
evaluator in case study one (Section 6.1.4), where the simulated agents’ trajectories
were projected onto a heatmap and compared to the real-world counterpart. This
method allowed for the comparison of aggregate agent trajectories rather than
individual ones, leading to a more comprehensive evaluation of the crowd simulation
model.

7.3 Advantages and Limitations
This section presents an overview of the key advantages and limitations of the Agora
framework, highlighting its potential impact on the field of crowd simulation and
outlining areas for further improvement. The advantages that position Agora as a
powerful and versatile solution are discussed first, followed by an examination of its
limitations, which serve as a foundation for refining and expanding the framework
in future work.

7.3.1 Advantages
The Agora framework addresses key challenges of crowd simulation and fulfills the
requirements and user considerations identified during the design of the architecture.
With its novel heatmap-based approach, Agora supports behavior modeling and
combination. Among its key advantages are behavior encapsulation, allowing for
flexibility in examining isolated effects, and improved model comparison through
image similarity metrics.

Agora streamlines the customization of navigation components and crowd appear-
ance, adapting to specific project requirements. By leveraging parallel processing on
the GPU, the framework delivers enhanced performance, scalability, and usability.

Promoting collaboration and knowledge exchange among researchers, Agora
facilitates sharing findings and models, driving the development of sophisticated and
accurate crowd simulation models. These strengths position Agora as a powerful
and versatile solution for a wide range of applications in the field.

This section provides a detailed examination of these key strengths, illustrating
Agora’s potential to advance the state of the art in crowd simulation.

Paradigm Shift. In situations where modeling the underlying reasoning behind
behaviors is challenging or not easily quantifiable, the paradigm shift from directly
modeling behavioral rules to producing heatmaps can be particularly beneficial.
By focusing on more tangible and measurable stimuli, researchers can represent
the factors that influence agent behavior more straightforwardly. The case studies

158 CHAPTER 7. DISCUSSION

presented in Sections 6.1 and 6.2 exemplify this approach, with successful modeling
of visibility, thermal, and density comfort levels using the heatmap paradigm.

The heatmap paradigm serves as the foundation for representing and combining
various stimuli in a more quantifiable and well-defined manner. By focusing on
external, quantifiable stimuli rather than the complex reasoning driving behaviors,
researchers can create simulations that better reflect the intricacies of human social
behavior in crowd simulations. This approach provides a more tangible representa-
tion of stimuli, making it easier to work with and combine in a versatile manner, as
opposed to combining behaviors that are implemented through programming and
encompass complex rules, as argued in the literature analysis of Section 2.5. The
heatmap approach thus lays the groundwork for a more generally applicable and
versatile combination, addressing the main objective of Versatility (Section 4.1.4).

This new paradigm further facilitates the adoption of data-driven methods in
modeling crowd behavior. By utilizing machine learning techniques within the
Agora framework, it could be possible to automatically generate specific heatmaps
that are capable of eliciting certain emergent behaviors as seen in real-life scenarios.

Heatmap Potential and Advancements. Heatmaps have shown their consid-
erable value as an innovative tool in facilitating the design of stimulus-centered
crowd simulation models. Their implementation enables the encoding of numerous
stimuli that drive human behavior into distinct layers. These layers can be blended
to construct a comprehensive representation of human decision-making processes.

This layered encapsulation brings two significant advantages: the capacity for
independent behavioral analysis and the ease of behavioral component sharing. The
implementation of heatmaps allows for the isolation and examination of individual
behavioral components without interfering with other aspects of the simulation.
It offers the flexibility to adjust the impact of specific stimuli by weighting their
influence or by entirely removing them from the behavior finite state machine.

Additionally, the heatmap approach enhances the accessibility and exchange of
behavioral components within the research community. This can be achieved by
sharing static heatmaps or the methodology behind their creation. As graphical
representations, heatmaps are computationally efficient, enabling the parallel pro-
cessing of dynamic and evolving stimuli on the GPU, thereby not impairing the
simulation’s performance. This improvement upon static map authoring offers an
advanced mechanism for behavior modeling, supporting a broad range of existing
works in the literature (further explored in section 7.4). Notably, the second case
study highlighted the efficiency of this paradigm in integrating additional features
into pre-existing models, as shown by the seamless incorporation of shadow-seeking
behavior into the thermal comfort model of Section 6.2.4.

Looking toward the future, the heatmap approach paves the way for a com-
prehensive library of behavioral models. If researchers adopt this stimulus-centric
modeling technique, it will allow for a wide variety of behavioral models that can
be seamlessly integrated into a BFSM and combined. Such an approach would
not only facilitate the creation of more holistic models of human behavior but also
significantly propel the state of the art in crowd simulation modeling.

7.3. ADVANTAGES AND LIMITATIONS 159

Ease of Authoring Behavior. As shown by the first case study in Section
6.1.3, the Agora framework simplifies the process of authoring behaviors for crowd
simulations compared to implementing native simulations from scratch. Agora pro-
vides tailored solutions to address various challenges that arise in crowd simulation,
particularly in the area of behavior authoring, which is in line with the Usability
requirement (Section 4.1.1).

This claim was substantiated by the authoring of the visibility behavior. Using
Agora, it was straightforward to employ the heatmap goal selection on the visibility
stimulus to enable agents to perceive their surroundings and choose goals leading
to the most visible locations, all done using a visual programming paradigm. This
focus on a more accessible and user-friendly interface for creating and editing
heatmaps builds upon the attempts to simplify behavioral authoring discussed in
the background section (Section 2.4). By taking the visual map-based approach one
step further, Agora effectively pushes the state of the art in terms of simplifying
the process of authoring complex behaviors for crowd simulations.

In contrast, achieving the same result in the native simulation proved to be
more challenging, requiring custom programming, which involved creating a custom
heuristic for evaluating the maps and projecting goals onto Unity’s navigation mesh.
By offering a more accessible and streamlined process, Agora allows researchers
to focus on the nuances of human social behavior rather than grappling with the
complexities of native implementation.

Behavior Encapsulation. The independence of heatmap-based behaviors offers
numerous practical advantages in crowd simulations, as argued in Section 3.3.1.
In this approach, stimuli computations rely only on the data contained in their
corresponding heatmaps and can be easily incorporated into the behavioral finite
state machine. This stands in contrast to native implementations, where the classical
programming paradigm can lead to tight coupling and interlocking of behaviors.

The benefits of this encapsulation were evident in the first case study. As shown
in Section 6.1.5, the visibility behavior became intertwined with the custom-made
heuristic that also used memory of previously visited locations and other factors to
influence overall behavior. The heatmap approach, on the other hand, enabled the
creation of a self-contained, visibility-based goal selection behavior. This paradigm
encourages researchers to confront the shortcomings of a particular behavior theory
and highlights that modeling just one behavior may not be sufficient for capturing
human reasoning. At the same time, it prevents the supplementation of a specific
stimulus with unrelated stimuli.

Additionally, encapsulation provides the flexibility to toggle layers on and off,
allowing for the examination of their isolated effects on the simulation. As could be
observed in Figure 6.16 of the second case study, it would be straightforward to
disable one comfort level to study the influence of the other. Likewise, it would be
possible to adjust the weights of each heatmap and observe the resulting behavior
changes. Although this could have been done in the original implementation by
modifying parameters controlling the weighted average of the comfort levels, the
Agora framework generalizes this process, enabling the independent toggling of
behaviors regardless of how they are combined.

160 CHAPTER 7. DISCUSSION

As explained in Section 2.3, previous frameworks have achieved this encapsulation
for other lower-level components of crowd simulation such as path planning and
adaptation, but not yet for the behaviors. Agora pushes the state of the art as
it lays the foundation for behaviors to be treated as independent “puzzle pieces”
that can be fit together without problems - effectively achieving the modular design
proposed in Section 4.1.2.

Model Comparison. The first case study demonstrated that the Agora frame-
work facilitates the assessment of the simulation output’s closeness to the real-world
phenomenon being modeled. As highlighted in the literature review in Section 2.2.6,
model evaluation is sometimes overlooked in the field of crowd simulation. One
reason for this tendency is the difficulty of performing model evaluation.

Agora simplifies this process by offering a convenient method for importing
real-world data and converting it into heatmaps, as well as an intuitive graphical
user interface for comparing these heatmaps with those generated by the simulation.
This comparison utilizes well-established image similarity metrics, as explained in
the reference provided (Figure 5.8).

By proposing the application of image similarity metrics to heatmaps built
from simulation output, Agora pushes the state of the art with respect to model
evaluation. This novel application strikes a good balance between low-level and
high-level evaluation, enabling more effective evaluation methods. Furthermore,
since each behavioral stimulus is encapsulated in a single node, it becomes much
easier to assess the contribution of each stimulus to the overall similarity between
the simulation and the real-world data.

This streamlined process for model comparison not only enhances the versatility
of the Agora framework (Section 4.1.4), but also allows researchers to better
understand the quality of their simulations and refine them to more closely represent
real-world human social behavior in crowd simulations. By providing versatile and
innovative evaluation methods, Agora fosters a more comprehensive understanding
of crowd dynamics, ultimately leading to more accurate and reliable simulations.

Replaceable Components. The Agora framework simplifies the process of
changing the underlying navigation components, such as pathfinding and obstacle
avoidance. As argued in the literature review (Section 2.5), this is typically a
challenging task that requires implementing or integrating specific algorithms and
adapting existing behaviors to account for the unique features of each component.

Since Agora is based on Menge, it allows for conveniently selecting the global
pathfinding and local obstacle avoidance mechanisms. To modify global pathfinding,
users only need to create the relevant environment representation (e.g., a waypoint
graph) and select it as the “velocity component” in the corresponding BFSM state
input. Changing local obstacle avoidance is even more straightforward; users can
simply select a different pedestrian model in the Menge simulator GameObject
within the scene.

This versatility in navigation components enables researchers and developers to
experiment with different approaches and optimize their crowd simulations more

7.3. ADVANTAGES AND LIMITATIONS 161

efficiently, without the need for extensive reimplementation or adjustments to
existing behaviors.

Versatile Crowd Generation. As demonstrated in the case studies, the ease of
customizing crowd appearance was beneficial in terms of adapting the simulation
to suit the specific requirements and goals of each scenario. Agora allows for easy
variation of crowd appearance to address challenges of variety and to adapt to the
required level of detail. Variety is addressed by UMA, which simplifies the creation
and instantiation of different-looking agents. The level of detail is managed by the
GUI, which lets users choose whether to use more realistic UMA models (rigged and
animated) or more simplistic static models, enhancing scalability (Section 4.1.3).

For example, case study one didn’t require detailed human models, as the focus
was on the simulation output trajectories for evaluation. In this instance, it was
possible to use simplistic characters to improve performance. Conversely, case study
two was more focused on the visual behavioral responses, making more detailed (and
animated) models more fitting. Creating the crowd was straightforward, involving
the definition of UMA population parameters such as DNA, colors, and wardrobe
(see Section 5.2).

The overall agent management pipeline, including crowd definition and spawning,
is seamlessly integrated into Agora. Once the population features have been defined,
it is possible to create “scenarios” for dynamically spawning agents at runtime,
which are then managed by Menge and visualized in the renderer. This versatile
crowd generation capability streamlines the simulation design process and allows
for better adaptation to specific project requirements.

By integrating UMA into the framework, Agora effectively addresses a common
gap in crowd simulation frameworks, which often do not incorporate techniques
for generating diverse agents. Agora bridges this gap by applying techniques
from the crowd variety field (Section 2.2.2) to the framework domain (Section
2.3), demonstrating the potential for enhanced adaptability and realism in crowd
simulations.

Enhanced Performance. As demonstrated in case study two, the heatmap
approach is an optimal venue for leveraging parallel processing in the GPU (see
Section 6.2.5). The encapsulation offered by heatmaps simplifies the process of
parallelizing computations, as synchronization issues between different data sources
are reduced. By utilizing compute shaders to generate heatmaps in parallel on the
GPU, a significant performance improvement was observed, with the simulation
frame rate increasing from less than 1 FPS to over 30 FPS.

This increase in performance is crucial for leveraging dynamic heatmaps that are
updated at runtime and can be visualized in real time within the xNode BFSM GUI
(see Figure 6.16). Agora’s heatmap paradigm not only simplifies the representation
of behavioral stimuli but also facilitates parallel processing, ultimately leading to
more efficient and responsive crowd simulations.

The enhanced performance offered by Agora addresses both scalability and
usability concerns (Sections 4.1.3 and 4.1.1). It enables the simulation of a larger
number of agents or more complex behavior while maintaining acceptable frame

162 CHAPTER 7. DISCUSSION

rates. In addition, the use of dynamic heatmaps in the xNode BFSM GUI would
not have been possible if they were being sequentially generated on the CPU. The
GPU parallelism in Agora opens up this possibility, providing a more interactive
and user-friendly experience.

The dynamic heatmap approach in Agora represents an innovative step forward
in the realm of crowd simulation authoring. While existing methods, as discussed in
Section 2.4, utilize static maps to author agent behavior, Agora introduces the use
of dynamic heatmaps, that reflect a constantly changing world. This novel approach,
made possible by the GPU-based implementation, enables Agora to design and
implement more flexible and adaptable crowd simulation models.

Facilitating Collaboration and Dissemination. Agora streamlines the process
of sharing findings, models, and extensions among researchers. This is partly
attributable to the encapsulation provided by heatmaps, which are independent of
other data sources, and partly because of Menge’s modular design, which allows for
easy integration of additional components.

With Agora, heatmaps and heatmap generation processes can be effortlessly
extracted and integrated into another simulation model, even if it utilizes a different
combination of subcomponents. This flexibility encourages collaboration between
researchers, as they can readily adapt and build upon each other’s work, fostering
the exchange of knowledge and the development of more sophisticated and accurate
crowd simulation models.

7.3.2 Limitations
While the Agora framework demonstrates a step forward in crowd simulation, it
is essential to acknowledge its limitations. These limitations include challenges in
representing sparse phenomena, capturing the full range of social behaviors, and
implementing certain aspects of the theoretical framework. Furthermore, the focus
on movement may exclude more diverse agent behaviors. Moreover, the integration
with Menge and the user interface can be improved for enhanced usability and
stability. Recognizing these limitations provides a foundation for refining Agora
and expanding its capabilities in future work.

Challenges with Sparse Phenomena. Heatmaps excel at modeling dense
phenomena, such as scalar values in the spatial domain. However, they can struggle
to represent sparse phenomena effectively.

For example, the heatmaps of case study one were representing the visibility
of the walkable areas of Þingvellir. Since the majority of the environment was
non-walkable (sparse data), the heatmap was mostly empty. This is an issue for the
heatmap paradigm because it still needs to allocate memory for the entire heatmap
and possibly perform many unnecessary operations on empty cells. While it is
possible to contain this issue by employing masks that define the relevant heatmap
cells, the representation can still become unwieldy and computationally inefficient.

In such situations, alternative modeling approaches that efficiently handle sparse
data might be more appropriate, as they can better capture the features of the

7.3. ADVANTAGES AND LIMITATIONS 163

environment and agent interactions.

Simplistic Attraction Model. While the heatmap paradigm provides innovative
ways to influence agent behavior through goal selection, velocity modification, and
transitions, it’s ultimately based on a simplistic attraction and repulsion model.
Similar to the social force model [66], agents are influenced by attractive and
repulsive forces, which can be seen as a reinterpretation of the existing paradigm.

For instance, in the second case study (Section 6.2), heatmaps encoded discomfort
levels, with higher values indicating increased discomfort. Goal selection based
on the highest pixel was not directly applicable, as it led agents towards greater
discomfort. This was addressed by using the inversion operation, which computed
the most comfortable locations. However, this simplistic approach may not be
suitable for all applications.

Furthermore, the model can only “nudge” agents into performing appropriate
actions based on heatmaps, but it doesn’t guarantee expected behavior. This
represents a shift from a “puppeteer-like” paradigm, where authors have more
control over behaviors, to an agent-centric approach, where emergent behaviors
result from stimuli combinations. This might not be suitable for all purposes. In
certain contexts, such as video games or movies, granular control over agents’ actions
is more important than flexibility, as reliable behaviors are required.

Lack of Calibration. Section 2.2.5 highlighted the importance of calibrating the
model’s parameters. However, this aspect was not fully implemented, leaving Agora
without an integrated way to determine the extent to which the chosen parameters
influence the quality of a particular model.

Nevertheless, the evaluation metric used to compare simulation output with
real-world data plays a significant role in the calibration process. Image similarity
metrics, as implemented in Section 5.6.2, address this aspect. Additionally, the
advantages of using heatmaps for the calibration process were discussed in Section
3.6.

While the calibration was not fully implemented, this dissertation lays the
groundwork for building techniques that leverage heatmaps for parameter calibration
in the future.

Unimplemented Heatmap Trajectory Modifier. The heatmap trajectory
modifier proposed in Section 3.4.2 was not implemented in the framework. This
component was intended to act as an additional adaptation step between global path
computation and local obstacle avoidance, considering heatmaps in the process.

A key challenge in implementing this feature was that not all velocity components
in Menge return a complete trajectory as output. For instance, in the vector field
velocity component, the preferred velocity is defined for each agent based on their
position relative to a uniformly discretized 2D grid, resulting in an instantaneous
velocity. Since a complete trajectory is neither computed nor stored within the
pipeline, an extra step would be needed to convert these instantaneous velocities
into complete trajectories, which could then be adapted from source to destination.

164 CHAPTER 7. DISCUSSION

Despite the lack of implementation, the theoretical foundation for this mechanism
has been established in this dissertation, contributing to the overall understanding
of how such a modifier could work in future research.

Heatmap Usability. The usability of heatmaps within the framework and the
associated graphical user interfaces could benefit from improvements to better
support user experience. One area of concern is the relationship between world
units and pixel units, which can be adjusted using a scale parameter. While this
approach is functional, it may prove unintuitive and cumbersome. For instance,
when defining perception masks in the heatmap goal selector, taking this distance
into account is crucial to avoid unintended consequences on agent perception.

Additionally, the “out-of-bound” strategy, as described in Section 3.3.5, relies on
Unity’s texture wrap mode1. This connection may be overlooked, posing potential
challenges to the heatmap combination process.

The framework’s relative heatmap was designed to define agent-centric “zones”
that interact with the surrounding environment, simulating the impact of local
stimuli on overall behavior, such as proxemics with intimate, personal, and social
zones. Although the current implementation using offsets and centering achieves its
intended purpose, there is room for improvement, particularly in GUI design and
user-friendliness.

Thus, the framework would greatly benefit from refining these features and
enhancing the overall usability and convenience for new users.

Movement Focus. The Agora framework primarily addresses the movement
aspect of crowd simulation, modeling the impact of various stimuli on agents’
behaviors and simulating their responses as they navigate the environment. This
focus on movement represents only one dimension of the complex range of behavioral
responses that individuals can exhibit in response to internal reasoning. Although
more intricate behaviors can still be simulated behind the scenes to some extent
through the use of BFSM states, effectively representing and rendering these
behaviors remains a challenge. Developing a generalized approach that can be
applied to a wide variety of scenarios is particularly difficult, given the nearly
limitless set of actions real people can perform. However, the possibility of applying
the heatmap paradigm to other behaviors has not been fully explored yet.

Limited Exploration of Direct Social Stimuli. While Sections 2.1 and 2.2.3
discussed human behaviors more directly related to social aspects, such as social
groups, social activities, and social emotions, the conducted case studies primarily
focused on physically grounded stimuli like visibility, thermal comfort, and density.
Although these stimuli do influence human social behavior – as Griffit and Veitch
[56] reported, various positive mood aspects decrease in denser crowds while negative
aspects increase – the current scope of the studies does not fully address direct
social stimuli such as group behavior.

1https://docs.unity3d.com/ScriptReference/TextureWrapMode.html

7.4. AGORA SUPPORTING LITERATURE 165

The heatmap paradigm shows promise in supporting more direct social stimuli,
but further research is needed to validate this claim. Conducting a heatmap-based
crowd simulation model and case study or user study that directly incorporates
social behavior would be a valuable contribution to future work.

Menge Limited Integration. While Menge is a powerful crowd simulation
system, it has its own set of limitations, exacerbated by the integration with Unity.

Menge’s strict handling of exceptions, particularly fatal exceptions, can lead
to stability issues when integrating it with Unity through P/Invoke (see Section
5.1.1). For instance, when using the navigation mesh velocity component, if an
agent requests to compute a path outside the navigation mesh, Menge throws a
fatal exception that cannot be caught by Unity, causing the Unity editor to crash.
Although this issue was mitigated by modifying Menge’s source code to prevent
throwing such exceptions, it would be more robust to handle them appropriately.

Menge’s design is primarily configuration-centric, relying on XML files for scene
and behavior setup. This approach leaves little room for runtime intervention and
dynamic adjustments. While the custom event callback system and dynamic agent
spawning mechanisms implemented in this work provide more flexibility, the ability
to create and manage various simulation components programmatically remains
limited.

Menge uses its format for defining spatial query data structures, necessitating
conversions between various formats. Although utilities exist to simplify this
process, it can be cumbersome and complex. For instance, using Unity’s navigation
mesh with Agora requires multiple steps, including exporting the underlying data
structure with a custom script, conditioning the mesh in a 3D modeling application,
and converting the file to a Menge-compatible format. Streamlining this process
and integrating it directly into the Agora framework would significantly improve
usability and user experience.

7.4 Relevance of Agora to Works of the Literature
This section assesses the compatibility of the Agora framework with various works
in the literature in the field of crowd simulation. The evaluation process involves
examining the features and limitations of Agora and considering how they may
affect the authoring of each crowd simulation behavioral model.

To facilitate this evaluation, two tables are provided. The first Table 7.1 outlines
the features and limitations of Agora, accompanied by brief descriptions. Each
feature (F1-F5) is presented as a potential advantage that could be compatible with
a given work, while each limitation (L1-L5) is identified as a potential constraint
that may impede a given work.

The second Table 7.2 applies these criteria to different works presented in the
literature review of Section 2.2.3. Each work is assessed for each feature and
limitation of Agora, receiving a compatibility rating of “bad”, “neutral”, or “good”.
This approach avoids numeric scoring, instead offering a more open and nuanced
measure of compatibility. The ratings across features and limitations give a broad
view of how well Agora might work with each work.

166 CHAPTER 7. DISCUSSION

This methodology offers a clear and systematic approach to assess the appli-
cability and relevance of Agora to other works in the crowd simulation domain.
Its purpose is to enhance understanding of the unique capabilities and challenges
of the Agora framework and to determine how they may influence different re-
search contexts. The analysis aims to identify opportunities for utilizing Agora in
novel and impactful ways, as well as to highlight areas for future development and
improvement of the framework.

7.4. AGORA SUPPORTING LITERATURE 167

Label Title Description

F1 Crowd Variety &
Visualization

To what extent would work X be compat-
ible with the crowd authoring tools and
visualization?

F2 Heatmap Authoring To what extent would work X be compati-
ble with the heatmap authoring?

F3 Behavior Combination To what extent would work X be compat-
ible with the behavior combination ap-
proach?

F4 Component
Independence

To what extent would work X be compat-
ible with the offered component indepen-
dence?

F5 Image Similarity
Evaluator

To what extent would work X be compati-
ble with the image similarity evaluator?

L1 Sparse Phenomena &
Memory

To what extent does work X rely on sparse
phenomena or memory?

L2 Simplistic Attraction
Model

To what extent would the simplistic attrac-
tion model hinder work X?

L3 Lack of Calibration To what extent would the lack of calibra-
tion hinder work X?

L4 Movement Focus To what extent does work X rely on actions
other than movement?

L5 No Granular Control To what extent would the absence of granu-
lar control hinder work X?

Table 7.1: This table presents an explanation of the labels used for features (F1-F5)
and limitations (L1-L5) in the evaluation of the Agora framework. It provides the
basis for the assessment in the subsequent Table 7.2.

168 CHAPTER 7. DISCUSSION

R
ef

.
D

es
cr

ip
tio

n
F1

F2
F3

F4
F5

L1
L2

L3
L4

L5
Sc

or
e

[8
5]

G
ro

up
be

ha
vi

or
aff

ec
te

d
by

re
la

tio
ns

hi
ps

m
od

el
ed

as
a

so
ci

al
ne

tw
or

k.
g

b
g

n
n

b
n

g
g

g
n

[7
6]

Jo
in

in
g

an
d

le
av

in
g

gr
ou

ps
ba

se
d

on
bo

re
do

m
an

d
ha

-
bi

tu
at

io
n.

g
g

n
g

g
g

g
g

n
g

g

[9
0]

Pe
rs

on
al

ity
tr

ai
ts

an
d

em
ot

io
ns

m
od

el
ed

as
he

at
tr

an
s-

fe
r

fu
nc

tio
n.

g
n

g
g

g
g

g
n

g
g

g

[4
5]

Sc
rip

te
d

be
ha

vi
or

al
re

sp
on

se
s

to
di

ffe
re

nt
em

ot
io

na
l

st
at

es
of

ag
en

ts
.

g
g

n
g

g
g

n
g

g
n

g

[1
29

]
A

rt
ifi

ci
al

lif
e

ag
en

ts
gu

id
ed

by
in

te
rn

al
m

ot
ifs

pe
rf

or
m

se
ve

ra
la

ct
io

ns
in

th
e

su
rr

ou
nd

in
g

en
vi

ro
nm

en
t.

g
n

n
n

b
b

b
n

b
b

b

[7
0]

A
ge

nt
s

de
ci

de
w

he
th

er
or

no
t

to
ho

ld
th

e
do

or
ba

se
d

on
in

te
rn

al
re

as
on

in
g.

b
n

n
n

b
g

b
n

b
b

b

Ta
bl

e
7.

2:
Ev

al
ua

tio
n

of
va

rio
us

cr
ow

d
sim

ul
at

io
n

w
or

ks
fr

om
th

e
lit

er
at

ur
e

re
vi

ew
of

Se
ct

io
n

2.
2.

3
ag

ai
ns

t
th

e
fe

at
ur

es
(F

1-
F5

)
an

d
lim

ita
tio

ns
(L

1-
L5

)
of

th
e

A
go

ra
fr

am
ew

or
k.

Ea
ch

w
or

k
is

as
se

ss
ed

w
ith

a
co

m
pa

tib
ili

ty
ra

tin
g

of
[b

]a
d,

[n
]e

ut
ra

l,
or

[g
]o

od
.

7.4. AGORA SUPPORTING LITERATURE 169

Social Group Models. In the work of Li and Lin [85], the crowd variety and
visualization features of Agora could improve the representation of agents in this
work, currently depicted as circles. However, mapping social networks onto heatmaps
could prove challenging. The work does employ multiple forces, suggesting that
Agora’s behavior combination could be beneficial. As for component independence
and the image similarity evaluator, these features could be adapted, as the work is
based on steering behaviors and lacks an existing evaluation method. Regarding
limitations, the work’s dependence on possibly sparse social networks and prior
information could clash with Agora’s approach to sparse phenomena and memory.
The complexity of social network connections may also present a hurdle to Agora’s
simplistic attraction model. Nevertheless, the work’s focus on movement aligns well
with Agora’s emphasis on the same, and the lack of need for granular control in the
work means Agora’s lack of it is not an issue. Also, the work’s limited parameters
might make Agora’s lack of calibration a non-problem. In summary, despite some
challenges, this work shows areas of potential alignment with Agora, especially
regarding crowd visualization, behavior combination, and focus on movement.

The work from Karimaghalou et al. [76] makes good use of spatial data and
employs SmartBody, an open-source character animation platform, which aligns
well with Agora’s focus on crowd variety, visualization, and heatmap authoring.
Although the work primarily addresses a single stimulus, limiting the use of Agora’s
behavior combination feature, its modular crowd simulation approach resonates with
the component independence offered by Agora. Also, the work’s existing heatmap
of the simulation could effectively complement Agora’s image similarity evaluator.
Regarding Agora’s limitations, this work is not significantly affected. It does not
rely heavily on sparse phenomena or memory-based behaviors, and its foundation
on group attraction and repulsion align with Agora’s simplistic attraction model.
With a minimalistic design involving a small number of parameters, the lack of
calibration in Agora wouldn’t pose a substantial problem. Although movement is
a key focus in this work, it also includes elements of group behavior, balancing
Agora’s emphasis on movement. Importantly, the work does not necessitate granular
control, aligning with one of Agora’s limitations. Overall, this assessment indicates
a promising potential for the integration of this work with the Agora framework,
given its inherent alignment with several key features and its minimal hindrance
from Agora’s limitations.

Social Emotion Models. The work of Mao et al. [90] influences agents’ behaviors
based on their personality traits and emotion. Regarding Agora’s features, the
visualization tools could enhance the existing agent representation, which currently
uses cylinders but is already compatible with video rendering. While the transfor-
mation of personality and emotion data into the heatmap paradigm would require
extra effort, the work’s use of a dissipation model, known to work well in Agora,
suggests feasibility. The multiple behavioral aspects at work - personality, emotion,
intra-group/extra-group interaction, and third-party influences - indicate a strong
alignment with Agora’s ability to combine behaviors. This, along with the modular
nature of the work, suggests that it could effectively integrate with Agora’s feature
of component independence. Further, the work’s existing practice of comparing

170 CHAPTER 7. DISCUSSION

evacuation times with other models points to a successful adaptation of Agora’s
image similarity evaluator. In terms of limitations, the work aligns with Agora by
not relying on sparse phenomena or memory. Its use of a threshold-based attraction
adjustment for path planning is compatible with Agora’s simplistic attraction model.
The focus on movement in the work aligns well with Agora’s similar focus, and
the absence of granular control in the work fits with Agora’s identical limitation.
However, calibration might be a point of contention, given the lack of calibration in
the work and the presence of several parameters. In conclusion, this work presents
a promising opportunity for the application of the Agora framework. Some areas,
such as heatmap authoring and calibration, may require careful consideration and
adaptation.

Agora’s feature set appears to adapt well to the work of Faroqi and Mesgari [45].
The 2D visualization currently used could be significantly enhanced by Agora’s crowd
variety and visualization tools. Furthermore, the relatively simplistic emotional
state model employed in this work aligns well with Agora’s heatmap authoring
capabilities. This work focuses on a single stimulus, which neither benefits from
nor conflicts with Agora’s behavior combination feature. The model, which is built
with NetLogo, is compliant with Agora’s emphasis on component independence.
Finally, the straightforward nature of extracting trajectories for comparison with
the original work makes the image similarity evaluator of Agora an appropriate
fit. The limitations of Agora also line up reasonably well with this work. The
absence of sparse phenomena or memory matches Agora’s limitations. The model’s
attraction mechanism, though somewhat scripted, operates on simple underlying
rules, suggesting possible compatibility with Agora’s simplistic attraction model.
The lack of calibration in the model, coupled with a small number of parameters,
indicates a good alignment with Agora’s limitations. The work’s exclusive focus on
movement is a plus, aligning seamlessly with Agora’s movement focus. However, the
presence of security agents directing others’ movements might pose a challenge to
Agora’s lack of granular control. Overall, this work presents a promising opportunity
for the application of the Agora framework, although some aspects, such as the
scripted attraction model and granular control, would require adaptation.

Social Activities. The work from Shao and Terzopoulos [129] which undertakes
an artificial life simulation at Pennsylvania train station poses considerable challenges
for integration with the Agora framework. The current use of DI-Guy for models
and animations aligns well with Agora’s capabilities. However, its complex behavior
model is not entirely suited for Agora’s heatmap authoring, and combining various
tasks and stimuli might be challenging. While there’s an overlap in the modular
approach between Agora and the study, certain modules like thirst and curiosity
levels aren’t natively supported in Agora. Furthermore, the evaluation methodology,
based on permutations of agent actions, doesn’t fit Agora’s image similarity evaluator.
The study’s use of memory and its intricate tasks pose challenges to Agora’s
simplistic attraction model. No calibration is performed in the study, but with
possibly many parameters, issues could arise with Agora’s lack of calibration. Also,
agents in the study perform various actions beyond movement, differing from Agora’s
focus. Finally, the study’s requirement for granular control isn’t supported in Agora.

7.4. AGORA SUPPORTING LITERATURE 171

In conclusion, despite some possible adaptations, the overall compatibility between
Agora and this work is limited due to Agora’s restrictions and the study’s task
complexity.

Likewise, the work of Huang and Terzopoulos [70] presents several challenges for
integration with the Agora framework. The work explores the behavior of virtual
agents in the context of door etiquette, where their decisions to hold the door
for others are influenced by several stimuli. It relies on procedural animations,
while Agora utilizes keyframe animations. Moreover, encoding the agents’ internal
reasoning into heatmaps could be complex. While both frameworks make use of
modular components, differences in handling animations and locomotion might
pose some obstacles. Additionally, Agora’s image similarity evaluator may not
be suitable for assessing the sequence of actions required in the door etiquette
behavior. Regarding limitations, the lack of sparse phenomena or memory in the
work aligns with Agora’s capabilities. However, the nuanced door etiquette scenario
may test the boundaries of Agora’s simplistic attraction model. Furthermore, the
study’s focus on non-movement actions and the possible need for granular control
do not align well with Agora’s preferences. Given these considerations, the overall
compatibility of the study with Agora is low.

This analysis, although limited in scope, provides valuable insights into the
potential applications and limitations of the Agora framework in various research
contexts. Agora is well-suited for studies focusing on crowd behavior influenced
by stimuli, such as those involving group dynamics or social emotions. These can
be effectively encoded into heatmaps, allowing the agents’ actions to be influenced
through Agora’s attraction model in coordination with the underlying navigation
module.

However, the analysis also highlights some challenges Agora might face in more
nuanced social scenarios, such as artificial life simulations or specific social etiquettes.
These scenarios often involve more intricate actions beyond movement, which is
Agora’s primary focus. Moreover, they often embody complex rules that may not
be easily interpreted or represented with heatmaps, potentially requiring a greater
level of control and precision.

In summary, while Agora exhibits significant potential in certain areas of crowd
simulation research, the present analysis underscores the importance of further
development and fine-tuning to enhance its adaptability in more complex and
nuanced scenarios.

172 CHAPTER 7. DISCUSSION

Chapter 8

Future Work

The potential of the Agora framework extends beyond the current implementation
and successful case studies. This chapter outlines a roadmap for evaluating the
framework’s scalability, modularity, usability, and versatility. The subsequent sec-
tions discuss the potential addition of social behaviors to enrich crowd simulations,
the initiation of perceptual studies to validate their realism and effectiveness, and
possible extensions to the theoretical and implementation aspects of the frame-
work. Lastly, improvements to the integration with the Menge Crowd Simulation
Framework are addressed, focusing on enhancing user experience and utility. The
collective aim is to guide further development and ensure the framework’s continued
evolution and applicability across various domains.

8.1 Roadmap for Principles Assessment
Agora framework’s potential for further refinement and research is vast, despite
extensive testing and successful implementation in two case studies. The first case
study served as a testbed for the evaluation technique, showcasing its effectiveness
by comparing the simulation’s heatmap output with real-world data from a field
study. The second case study exhibited the framework’s ability to integrate multiple
behavior models, simulating individuals balancing thermal comfort and crowd
density. Although these achievements are significant, numerous unexplored scenarios,
modalities, and contexts remain. Consequently, this section suggests a roadmap of
tests for assessing the framework’s features, objectives, and architectural principles.

1. Scalability Assessment: This test aims to understand how well the system
performs under high load conditions and handles an increasing number of
complex behaviors. For example, a simulation could be designed to mimic a
large public event, like a music festival, with thousands of virtual attendees
interacting simultaneously. The performance metrics evaluated could include
frame rate, response time to user input, and the overall realism of the crowd
dynamics.

173

174 CHAPTER 8. FUTURE WORK

2. Modularity Evaluation: This examination focuses on the Agora frame-
work’s modular design and the ease of integrating various components. A
possible test scenario could involve exploring crowd-generation solutions al-
ternatives to Unity Multipurpose Avatar, such as MakeHuman or Character
Creator. This would provide insights into how smoothly different solutions
can be incorporated and how they perform. Another aspect to consider is
the interchangeability of navigation algorithms. Investigations could involve
interchanging various navigation techniques supported by Menge such as
waypoint graphs or uniform grids to evaluate their implementation and per-
formance in the given framework. To further probe the system’s extensibility,
an additional feature could be introduced via the plugin system. This could
involve implementing an enhancement to the heatmap authoring tool, such as
integrating a painting extension.

3. Usability Testing: These tests aim to evaluate the ease of use and the user
experience of the Agora framework. An initial exploratory phase could involve
users from various domains, such as urban planning or event management,
creating crowd simulations and providing feedback. This could transition into a
formal user study, asking participants to undertake specific tasks and assessing
metrics such as user satisfaction, time taken, and simulation accuracy. Lastly,
expert-led heuristic evaluations could be conducted. These evaluations would
involve experts systematically inspecting the interface, potentially creating
a crowd simulation of a complex scenario such as an emergency evacuation,
and assessing the system against established usability principles.

4. Versatility Exploration: This investigation seeks to evaluate the flexibility
of the Agora framework across various application domains and behavior
theories. Each domain—urban planning, safety, architecture, and entertain-
ment—has distinct requirements. For instance, urban planners and safety ex-
perts might prioritize interpretability and accuracy over real-time performance,
while the entertainment industry emphasizes visually convincing simulations
that operate smoothly in real-time. Architects may value the capability to
evaluate unique crowd behaviors in custom-shaped environments. Addition-
ally, the framework’s adaptability to different behavior theories should be
explored. For instance, heatmaps, currently used to represent spatial distribu-
tion, could also model gaze behavior in a setting like an art gallery, indicating
the focus of attention of AI agents toward different artworks. Comparing
the simulated gaze heatmap with real visitor behavior data could provide
insightful evaluation metrics, demonstrating the framework’s versatility.

The recommendations proposed in this roadmap aim to offer a systematic,
practical approach to understanding and enhancing the Agora framework’s core
principles: scalability, modularity, usability, and versatility. By conducting these
investigations and implementing the findings, it is envisioned that the Agora
framework will demonstrate improved performance across a wider range of scenarios
and become increasingly accessible to users from various domains. Furthermore,
these assessments will aid in identifying opportunities to extend the framework’s

8.2. ADDING SOCIAL BEHAVIORS 175

capabilities beyond its current remit, potentially paving the way for innovations in
the broader field of crowd simulation and analysis.

8.2 Adding Social Behaviors
Addressing the limitation related to the lack of more direct social behaviors within
the Agora framework could involve integrating additional behavioral models and
examining their interactions with the existing heatmap-based approach. One
potential direction for a new case study might include the introduction of grouping
behavior in the simulation.

Using the heatmap paradigm in Agora, this can be accomplished by assigning
each agent to a group and creating a dynamic heatmap that emphasizes the locations
of other group members for each agent. By incorporating this heatmap into the plan
adaptation pipeline and combining it with other heatmaps through color operations,
locations occupied by other group members become more attractive for the virtual
agent, prompting them to move toward their companions. However, it is crucial
to acknowledge that this method may not suffice in preserving group formations,
as agent behavior is influenced by various stimuli and their perception is limited,
possibly preventing them from detecting companions who are too distant.

8.3 Perceptual Studies
To better comprehend the impact of more direct social behaviors on agent reception,
a suggested perceptual study design was created but not executed (due in part
to covid-19). The experiment was intended to investigate the influence of virtual
humans on participants’ experience in the urban environment of Section 6.2.1.
Employing virtual reality technology, participants would be fully immersed in the
simulated environment, allowing them to get a first-hand experience of being in the
city with the virtual agents.

The rationale for this study is threefold: first, it would evaluate the quality of
the social urban environment created within the Agora framework, built on top
of the work of Hafsteinsson [61]. Second, it would assess the effectiveness of the
implemented behaviors, such as thermal and density comfort theories, in conjunction
with more direct social behaviors like grouping. Finally, it would measure the overall
perception and interaction of the agents, encompassing their appearance, movement,
and responsiveness.

8.4 Extensions to the Theoretical Framework
A more advanced selection model for heatmap attractiveness can be designed to
better account for zones of high value and deliver a more realistic representation
of people’s preferences when choosing the most attractive location. This can be
achieved by implementing a clustering approach that identifies areas of contiguous
high-value pixels and considers the centroid of these clusters as the most appealing
location.

176 CHAPTER 8. FUTURE WORK

One potential clustering method to achieve this is the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algorithm [41], which groups
together spatially close pixels based on a density criterion. Using DBSCAN, areas
of contiguous high-value pixels can be identified as clusters, and the centroids of
these clusters can be calculated by averaging the coordinates of the pixels within
each cluster.

For example, Figure 8.1 illustrates a magnified section of the air temperature
map in case study two, emphasizing a specific spot. Using the current mechanism
for selecting the attractiveness of the heatmap, a “single selection” process would
identify the left heatmap cell as the most appealing location. However, there are
other cells with the same value in the vicinity, which could be equally suitable choices.
By employing the DBSCAN clustering approach, these promising locations can be
grouped, and the centroid of the cluster can be returned as the most attractive
location.

The selection process can be refined further by considering additional factors,
such as the size or area of the clusters. By prioritizing clusters with larger areas, the
model can account for the fact that people tend to prefer areas where a desirable
phenomenon is more widespread. In this case, the model would return the centroid
of the largest cluster as the most attractive location.

8.5 Extensions to the Implementation
Heatmap-based Model Calibration. A promising direction for future research
is the adaptation of existing calibration techniques to the heatmap paradigm and
their integration into the Agora framework. The calibration process typically
involves defining a distance metric to compare the output data from a simulation
model with reference data, which can be sourced from real-world observations or
other validated models. Through iterative parameter variation and comparison of
the simulation output with reference data using the chosen metric, model parameters
can be calibrated until convergence is achieved based on a predefined threshold.

The approach proposed by Wolinski et al. [149] serves as a compelling starting
point, as it applies the calibration process using a variety of distance metrics and
optimization approaches. Building upon this work, a novel calibration method that
leverages the advantages of encoding model parameters as heatmaps and using image
similarity metrics can be developed. Specifically, it would be possible to employ
the image similarity metrics previously defined (Section 5.6.2) in the evaluation
component as the distance metrics, rather than those employed in the cited work.

A major advantage of this approach is the potential for utilizing GPU paralleliza-
tion, which can significantly accelerate the calibration process. This is especially
important when dealing with large-scale simulations and complex models that re-
quire substantial computational resources. By combining heatmap-based parameter
encoding, image similarity metrics, and GPU parallelization, the calibration process
can be enhanced, and the overall performance of crowd simulation models can be
improved.

8.5. EXTENSIONS TO THE IMPLEMENTATION 177

Figure 8.1: Comparison of single selection (blue) and clustering approach (orange)
in a magnified air temperature map from case study two.

Heatmap-based Trajectory Adaptation. A possible approach to address the
challenge of heatmap-based trajectory adaptation (see Section 7.3.2) involves creat-
ing an interface that extracts complete trajectories from the velocity components.
For components that already store a complete trajectory, such as the navmesh,
this process would be straightforward and involve simply returning the existing
trajectory. For other components, iteratively simulating agent movement according
to the velocity component function and creating a trajectory from the resulting
waypoints could be a viable solution.

For example, in the case of the velocity field component, which only offers an
instantaneous velocity at each step of the simulation and indirectly accounts for the
global environment, the trajectory of an agent can be calculated by integrating the
velocity vectors over time, as shown in Figure 8.2. By generalizing this approach

178 CHAPTER 8. FUTURE WORK

through an interface that can be applied to any velocity component, modifying the
trajectories based on heatmaps becomes more feasible. This would involve iterating
through the waypoints and adjusting them according to the heatmap information,
as previously explained.

Implementing this heatmap trajectory adaptation approach could enhance the
ability of the Agora framework to account for global influences and provide more
accurate, realistic agent-based simulations.

Figure 8.2: Example of Menge vector field velocity component. The orange bars
are the instantaneous velocity vectors for each grid cell. It is possible to calculate
the trajectory of an agent by integrating the velocity vectors over time.

Agent State Visualization. In order to expand the scope of Agora and further
improve its capabilities in simulating complex and nuanced agent behaviors, a
potential approach could involve leveraging Unity’s rendering and visualization
capabilities to build upon the existing groundwork laid by Menge’s BFSM states.
This would allow for a more comprehensive visualization of agent behaviors and
actions, broadening the scope beyond navigation.

One possible way to achieve this is by taking inspiration from the icon-based
visualization used in one of the example scenarios in the original Menge paper
[32]. A generalized icon system could be developed within Agora and Unity to

8.6. IMPROVING MENGE INTEGRATION 179

represent actions and internal states more effectively, making it easier to visualize
agent behaviors across various scenarios.

For a more advanced solution, Agora could integrate a behavior realizer such
as SmartBody [74] to handle the visualization of agent behaviors. SmartBody is
designed around the Behavior Markup Language (BML) standard [143], which
enables the definition of how behaviors are realized and visualized. As a realizer,
SmartBody consumes these BML specifications and acts out the behaviors, providing
a more generalized approach to representing complex agent interactions.

SmartBody supports a wide range of BML behaviors, including body postures,
full or partial body animations, gaze, head motions, facial expressions, speech, event
or progress notifications, and the interruptions of prior behaviors. By integrating
a behavior realizer like SmartBody within Agora, the resulting simulation would
become more engaging, detailed, and better suited for close exploration by users.

Implementing such visualization enhancements in Agora would provide a more
accurate and immersive representation of crowd behavior, broadening its capabilities
beyond navigation and allowing for a deeper understanding of complex and nuanced
agent interactions.

8.6 Improving Menge Integration
Exception Handling. To enhance Agora’s stability, it would be beneficial to
develop an exception handling mechanism that bridges the gap between unmanaged
code (Menge’s C++ DLL) and managed code (Unity’s C#/.NET). This would involve
a thorough examination and modification of Menge’s codebase to ensure that the
C-API interface effectively catches the underlying exceptions raised within the
simulator.

One possible approach for achieving this is to implement a comprehensive error
handling system that returns error codes alongside any operation results. These
error codes would be checked by the managed code side, allowing Unity to recognize
when an exception has been thrown in the Menge simulator. This would enable
Unity to handle exceptions gracefully, without crashing the editor, and ultimately
lead to a more robust and stable Agora framework.

While this process may be challenging due to the size of Menge’s codebase,
investing the time and effort into refining the exception-handling mechanism between
Menge and Unity would significantly improve Agora’s stability and reliability, making
it more user-friendly and better suited for a variety of applications.

Event System. In order to foster a tighter integration between Menge and Unity
within the Agora framework, it would be advantageous to develop a more powerful
event system. The current approach relies on a single callback defined in the
simulator wrapper instance in C# and executed during the simulation step inside
the native DLL in Menge. Although this is functional for certain purposes, such as
when an agent changes state, there is room for improvement in the way events are
handled.

A potential approach would be to design a more flexible simulation pipeline in
Menge, featuring a series of callback functions placed at key points of the simulation

180 CHAPTER 8. FUTURE WORK

process. This would enable the system to respond to various events occurring
within the Menge simulator. In order to achieve this, the C-API could be extended
to facilitate the registration of arbitrary callbacks that would be executed at the
designated points throughout the simulation. This would make the simulation
process between Menge and Unity more cohesive and streamlined.

Programmatic Modeling. An intriguing direction for making Agora more
interactive would be to further extend Menge to enable programmatic creation and
editing of simulation components during runtime. As previously mentioned, Menge
is primarily a configuration-centric framework, with all elements being instantiated
at initialization time through the parsing of configuration files for the scene and
behavior. This can be limiting, as there may be cases where new elements are
required during the unfolding of the simulation.

An example of this constraint is the requirement to define agents and goals
at the design stage, which may not be suitable for dynamic simulations. A more
practical approach would be to enable the dynamic creation of these simulation
elements during runtime. This dissertation has made progress in addressing this
issue for agents and goals, significantly enhancing Menge’s capabilities.

Building upon these improvements, it would be beneficial to further extend the
framework to allow for dynamic instantiation and modification of other simulation
components, such as elements of the BFSM. This could involve programmatically
creating new states in response to events within the simulation or editing existing
transitions based on changes in the environment. To achieve this, Menge’s original
codebase would need to be extended similarly to the modifications made for agents
and goals. Additionally, relevant functions would need to be exposed through the
C-API, enabling them to be called from external sources, such as the Agora Unity
side.

By enabling programmatic interaction with the simulation during runtime, Agora
would become a more flexible and adaptable framework, better suited for a variety
of dynamic and evolving scenarios.

Data-Driven Crowd Simulation. The potential use of the Agora framework,
and the heatmap paradigm in particular, to support data-driven behavioral modeling
in crowd simulations presents a promising future research direction. Consider a
researcher aiming to investigate or replicate the underlying stimuli that may influence
a specific real-world scenario. It could be possible to collect relevant data, such as
pedestrian trajectories, and encode these into a heatmap for each individual. This
information could serve as the foundational input for a data-driven approach.

One proposed application of this approach would be integrating a machine
learning module into Agora. For instance, a neural network could be trained to
automatically generate the guiding heatmaps that inform agent behavior. This
would establish a dynamic, iterative learning loop that operates as follows:

1. The neural network produces a series of guiding heatmaps that dictate agent
behavior.

8.6. IMPROVING MENGE INTEGRATION 181

2. A simulation is conducted using these heatmaps, running for a predetermined
number of simulation steps.

3. The simulation output, converted into a heatmap format, is compared to the
heatmap representation of the actual real-world phenomenon. This comparison
is facilitated by Agora’s image similarity evaluator.

4. The process is repeated, with the neural network updating its heatmap
generation based on feedback from the image similarity evaluation. This
iterative learning process continues until the output heatmaps converge with
the real-world heatmaps.

Regarding the machine learning aspect, this approach could benefit from the
use of reinforcement learning algorithms. These algorithms are especially adept at
managing situations where decisions made at one point in time influence future
states, which aligns well with crowd movement dynamics. For instance, the heatmap
generation process could be framed as a policy learning problem, with the reward
being the similarity between the simulated and real-world heatmap.

A realistic implementation could involve using a convolutional neural network
due to its effectiveness in handling image data. The CNN could be trained to
generate heatmaps from a combination of the initial state of the crowd and the
current set of guiding heatmaps. This approach would necessitate a sufficiently
large dataset of crowd movements and behaviors, as well as computational resources
for training the neural network.

The integration of machine learning with the Agora framework could facilitate
more sophisticated, data-driven modeling of crowd behavior, enhancing the realism
and applicability of crowd simulations in future research.

Assets Conditioning Tools. To enhance the usability of the Agora framework,
it would be advantageous to integrate the necessary authoring tools for creating
assets required by Menge’s velocity components. Many of these components, which
deal with global path planning (such as roadmap, navmesh, and velocity field), rely
on an underlying representation of the environment in a custom Menge format.
Providing utilities within Agora that streamline the conversion process between 3rd
party formats and Menge formats would greatly improve the user experience.

Some of these utilities have already been developed by Sean Curtis, the creator
of Menge, and are available in a repository1. These tools are written in Python,
so to incorporate them into Agora, they would need to be converted to C# or
integrated into Unity through another method. Additionally, creating user-friendly
graphical interfaces for these utilities would make them more accessible and easier
to use.

By integrating authoring utilities within Agora, the framework would become
more convenient and efficient for users, ultimately simplifying the process of creating
assets and setting up simulations.

1https://github.com/curds01/MengeUtils/

182 CHAPTER 8. FUTURE WORK

Dissemination. To effectively disseminate Agora and promote its use in the field
of crowd simulation, it is crucial to make the framework accessible and user-friendly
for a wider audience. This can be achieved through a combination of appropriate
packaging, distribution, documentation, and conducting a usability study.

First, Agora should be packaged in a convenient manner that takes into account
its various components (Unity Assets, Menge) and dependencies (UMA). By creating
an organized package structure, users will find it easier to navigate and integrate
the framework into their projects.

Second, distributing Agora through a platform such as GitHub would enable
users to easily access and download the framework. By making Agora available as
a GitHub repository, users can add it to any Unity project as a custom git URL
through the package manager. This streamlined distribution process would further
encourage the adoption of the framework.

Comprehensive documentation and demo tutorials are essential in guiding users
through the process of integrating Agora and building with it. Clear instructions
and examples can help users understand the framework’s capabilities and how to
utilize them effectively in their projects.

In addition to these dissemination strategies, conducting a usability study
would be a valuable step in further enhancing the Agora framework. By gathering
feedback from users who have tried or integrated the framework into their projects,
developers can gain insights into its strengths, areas for improvement, and potential
new features. A usability study would involve a diverse group of participants from
various backgrounds and expertise levels, ensuring a wide range of perspectives on
the framework’s performance and user experience.

This feedback can then be used to inform future development of the framework,
addressing any limitations and refining the overall user experience.

Chapter 9

Conclusion

9.1 Supported Claims
Human behavior is influenced by a multitude of spatial stimuli that can be effectively
represented using heatmaps. This paradigm enables the combination of various
stimuli to create a more comprehensive behavioral model, accounting for the
numerous factors at play. The resulting model output, in the form of heatmaps, can
be objectively compared with real-world counterparts utilizing well-defined image
similarity metrics for evaluation.

The Agora framework showcases its strength by facilitating the development
of simulation models that achieve comparable quality to those implemented from
scratch, while significantly simplifying the process. The features provided by the
Agora framework streamline the development of simulation models, making them
more accessible and efficient without sacrificing quality. This balance between ease
of use and maintained quality is a key advantage of the Agora framework.

The Agora framework serves as a robust foundation to address the numerous
challenges present within the field of crowd simulation. Agora’s modular software
architecture and encapsulation of behaviors through heatmaps ultimately facilitate
the seamless sharing of behavior models within the research community. This should
promote collaboration and accelerate advancements in the field, driving progress
toward more realistic and nuanced simulations.

9.2 Contributions
This thesis has made contributions to various fields of study, as outlined below:

Crowd Simulation: The research introduces a novel approach for modeling,
combining, and evaluating agent behaviors in crowd simulations. Centered around
the heatmap paradigm, the approach enables the encoding and encapsulation of
individual stimuli that affect human behavior into distinct layers. These layers

183

184 CHAPTER 9. CONCLUSION

can then be combined to create more holistic models, and the heatmaps can be
compared for model evaluation. This innovative method offers a new perspective
on behavior modeling and combination in crowd simulations.

Systems Engineering: The thesis presents a robust framework that adheres
to well-established software architecture principles. The framework effectively
decomposes the various challenges of crowd simulation and addresses each component
separately while maintaining a cohesive integration to support the entire simulation
pipeline. Additionally, the implementation of the heatmap interface allows for
leveraging the parallel computation capabilities of GPUs, enhancing performance
and scalability.

Human-Computer Interface: This research contributes to the field of human-
computer interface by introducing an intuitive way of visualizing and authoring
agent behavior through a visual programming-based approach. The node-based
user interface facilitates the editing and visualization of behavioral finite state
machines, simplifying the process of leveraging the implemented systems to influence
agent behavior. This method further refines the heatmap concept, enabling the
dynamic simulation of heatmaps encoding behavioral stimuli, which can be directly
integrated into an agent’s decision-making process. Furthermore, the thesis presents
an innovative device for field studies that collects walking trajectories and additional
dyadic data, demonstrated in the Þingvellir field study.

Human Behavior Modeling: The research presents a novel model of human
behavior based on the attraction to the most visible locations in an environment.
It introduces a method for performing space-syntax visibility analysis of 3D en-
vironments in Unity and modeling agent behavior influenced by the most visible
locations in their surroundings. This model can be used to simulate tourists walking
in popular destinations. The simulation output was compared against real-world
data, demonstrating the effectiveness of the model and providing valuable insights
into human behavior modeling.

9.3 Limitations and Challenges
Not a Universal Solution. While the proposed approach of utilizing heatmaps to
nudge agents towards appropriate actions offers several advantages, it also presents
certain limitations that may render it unsuitable for specific applications. This
method represents a shift from the “puppeteer” paradigm, which grants authors
more control over agent behaviors, to a more stimulus-centric approach where
emergent behaviors arise from various stimuli combinations.

However, in contexts where granular control over agents’ actions is crucial, the
flexibility provided by this approach may be outweighed by the need for consistent
and reliable behaviors. Consequently, the stimulus-centric approach may not be the
ideal choice for every scenario, as it may not always guarantee the desired outcomes.

9.4. A STEP TOWARDS THE PROTOPIA 185

Moreover, while heatmaps excel at modeling dense phenomena, such as scalar
values in the spatial domain, they may struggle to represent sparse phenomena.
This limitation can hinder the method’s effectiveness in scenarios that involve sparse
data. Therefore, alternative modeling approaches that efficiently handle such data
may be more appropriate in these situations.

Only one Dimension of Human Behavior. The Agora framework primarily
emphasizes the movement aspect of crowd simulation, effectively modeling the
influence of diverse stimuli on agents’ behaviors and simulating their responses as
they navigate the environment. Nevertheless, this focus on movement captures
merely a single dimension of the complex array of behavioral responses that indi-
viduals can exhibit based on internal reasoning and external stimuli. Consequently,
the framework does not sufficiently address the full spectrum of human behavior,
particularly in more intricate and nuanced situations. Developing a generalized
approach applicable to a wide range of scenarios is inherently challenging due to
the vast set of actions real people can perform, and remains an open problem in
the field of crowd simulation.

9.4 A Step Towards the Protopia
This thesis has presented a novel approach to crowd simulation, enabling the
combination of human behavior models through the innovative use of heatmaps.
The central aspect of this approach, the heatmap paradigm, shifts the focus from a
rule-centric formulation to a stimulus-centric one. Heatmaps effectively encode the
various stimuli that factor into human reasoning processes and can be employed
to influence human behavior. This transition from behavioral rules to heatmap-
encoded stimuli allows for the effective integration of different driving factors of
human behavior, enabling the creation of more comprehensive models. Furthermore,
the use of heatmaps also provides a means for objectively evaluating these models,
ensuring their accuracy and reliability.

Although this research has demonstrated the effectiveness of the proposed
approach through an easy-to-use and highly performant software solution and
two case studies, it merely scratched the surface of the potential applications and
implications of this new paradigm for modeling human behavior. Exploring different
ways to utilize heatmaps for influencing human behavior, applying the approach
to diverse scenarios, and creating more expressive agents that can take advantage
of the powerful underlying behavioral system all present a range of exciting future
research directions.

186 CHAPTER 9. CONCLUSION

Bibliography

[1] Ergonomics of the thermal environment — Instruments for measuring physical
quantities. Standard, International Organization for Standardization, Geneva,
November 1998. 133

[2] MakeHuman, 2000. URL http://www.makehumancommunity.org/. 21

[3] Unity Multipurpose Avatar - GitHub, 2013. URL https://github.com/
umasteeringgroup/UMA. 21, 23

[4] Reallusion Character Creator, 2015. URL https://www.reallusion.com/
character-creator/default.html. 21, 22

[5] MetaHuman Creator: Fast, High-Fidelity Digital Humans in Unreal Engine,
2021. 21, 22

[6] Zeyad Abd Algfoor, Mohd Shahrizal Sunar, and Hoshang Kolivand. A
Comprehensive Study on Pathfinding Techniques for Robotics and Video
Games. International Journal of Computer Games Technology, 2015:1–11,
2015. ISSN 1687-7047, 1687-7055. https://doi.org/10.1155/2015/736138.
URL http://www.hindawi.com/journals/ijcgt/2015/736138/. 27, 28

[7] Mohamed A. Ahmed and Talal M. Alkhamis. Simulation-based optimization
using simulated annealing with ranking and selection. Computers & Operations
Research, 29(4):387–402, April 2002. ISSN 03050548. https://doi.org/10.
1016/S0305-0548(00)00073-3. URL https://linkinghub.elsevier.com/
retrieve/pii/S0305054800000733. 33, 34

[8] Thomas Allen, Aleksandar Parvanov, Sam Knight, and Steve Maddock. Using
Sketching to Control Heterogeneous Groups. Computer Graphics and Visual
Computing (CGVC), page 5 pages, 2015. https://doi.org/10.2312/CGVC.
20151249. URL https://diglib.eg.org/handle/10.2312/cgvc20151249.
Artwork Size: 5 pages ISBN: 9783905674941 Publisher: The Eurographics
Association. 45, 47

[9] Mahmoud H Alrefaei and Sigrún Andradóttir. A simulated annealing algorithm
with constant temperature for discrete stochastic optimization. Management
science, 45(5):748–764, 1999. Publisher: INFORMS. 33, 34

187

http://www.makehumancommunity.org/
https://github.com/umasteeringgroup/UMA
https://github.com/umasteeringgroup/UMA
https://www.reallusion.com/character-creator/default.html
https://www.reallusion.com/character-creator/default.html
https://doi.org/10.1155/2015/736138
http://www.hindawi.com/journals/ijcgt/2015/736138/
https://doi.org/10.1016/S0305-0548(00)00073-3
https://doi.org/10.1016/S0305-0548(00)00073-3
https://linkinghub.elsevier.com/retrieve/pii/S0305054800000733
https://linkinghub.elsevier.com/retrieve/pii/S0305054800000733
https://doi.org/10.2312/CGVC.20151249
https://doi.org/10.2312/CGVC.20151249
https://diglib.eg.org/handle/10.2312/cgvc20151249

188 BIBLIOGRAPHY

[10] Ronald C. Arkin. Path Planning For A Vision-Based Au-
tonomous Robot. In Mobile Robots I, volume 0727, pages
240–250. International Society for Optics and Photonics, Febru-
ary 1987. https://doi.org/10.1117/12.937802. URL https:
//www.spiedigitallibrary.org/conference-proceedings-of-spie/
0727/0000/Path-Planning-For-A-Vision-Based-Autonomous-Robot/10.
1117/12.937802.short. 29

[11] Farhad Azadivar. SIMULATION OPTIMIZATION METHODOLOGIES.
Proceedings of the 31st conference on Winter simulation: Simulation a bridge
to the future-Volume 1, page 8, 1999. 33, 34

[12] O Burchan Bayazit, Jyh-Ming Lien, and Nancy M Amato. Better Group
Behaviors in Complex Environments using Global Roadmaps. page 11, 2002.
26

[13] A. Beacco, N. Pelechano, and C. Andújar. A Survey of Real-Time Crowd
Rendering, December 2016. URL https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.12774. 16, 17

[14] Michael Belz, Lennart W. Pyritz, and Margarete Boos. Spontaneous flocking
in human groups. Behavioural Processes, 92:6–14, January 2013. ISSN
03766357. https://doi.org/10.1016/j.beproc.2012.09.004. URL https:
//linkinghub.elsevier.com/retrieve/pii/S0376635712001921. 12, 14

[15] Glen Berseth, Mubbasir Kapadia, and Petros Faloutsos. ACCLMesh:
curvature-based navigation mesh generation. In Proceedings of the 8th
ACM SIGGRAPH Conference on Motion in Games, MIG ’15, pages 97–
102, Paris, France, November 2015. Association for Computing Machin-
ery. ISBN 978-1-4503-3991-9. https://doi.org/10.1145/2822013.2822043.
URL https://doi.org/10.1145/2822013.2822043. 30

[16] Victor J Blue and Jeffrey L Adler. Emergent fundamental pedestrian flows
from cellular automata microsimulation. Transportation Research Record,
1644(1):29–36, 1998. Publisher: SAGE Publications Sage CA: Los Angeles,
CA. 28, 30

[17] Victor J. Blue and Jeffrey L. Adler. Cellular Automata Microsimulation of
Bidirectional Pedestrian Flows. Transportation Research Record, 1678(1):135–
141, January 1999. ISSN 0361-1981. https://doi.org/10.3141/1678-17.
URL https://doi.org/10.3141/1678-17. Publisher: SAGE Publications
Inc. 28, 30

[18] Anton Bogdanovych, Juan Antonio Rodríguez, Simeon Simoff, A. Cohen,
and Carles Sierra. Developing Virtual Heritage Applications as Normative
Multiagent Systems. In Marie-Pierre Gleizes and Jorge J. Gomez-Sanz,
editors, Agent-Oriented Software Engineering X, volume 6038, pages 140–
154, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-
19207-4. https://doi.org/10.1007/978-3-642-19208-1_10. URL http:
//link.springer.com/10.1007/978-3-642-19208-1_10. 16

https://doi.org/10.1117/12.937802
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/0727/0000/Path-Planning-For-A-Vision-Based-Autonomous-Robot/10.1117/12.937802.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/0727/0000/Path-Planning-For-A-Vision-Based-Autonomous-Robot/10.1117/12.937802.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/0727/0000/Path-Planning-For-A-Vision-Based-Autonomous-Robot/10.1117/12.937802.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/0727/0000/Path-Planning-For-A-Vision-Based-Autonomous-Robot/10.1117/12.937802.short
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12774
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12774
https://doi.org/10.1016/j.beproc.2012.09.004
https://linkinghub.elsevier.com/retrieve/pii/S0376635712001921
https://linkinghub.elsevier.com/retrieve/pii/S0376635712001921
https://doi.org/10.1145/2822013.2822043
https://doi.org/10.1145/2822013.2822043
https://doi.org/10.3141/1678-17
https://doi.org/10.3141/1678-17
https://doi.org/10.1007/978-3-642-19208-1_10
http://link.springer.com/10.1007/978-3-642-19208-1_10
http://link.springer.com/10.1007/978-3-642-19208-1_10

BIBLIOGRAPHY 189

[19] Leyde Briceno and Gunther Paul. MakeHuman: A Review of the Mod-
elling Framework. In Sebastiano Bagnara, Riccardo Tartaglia, Sara Al-
bolino, Thomas Alexander, and Yushi Fujita, editors, Proceedings of the
20th Congress of the International Ergonomics Association (IEA 2018),
volume 822, pages 224–232. Springer International Publishing, Cham,
2019. ISBN 978-3-319-96076-0 978-3-319-96077-7. https://doi.org/
10.1007/978-3-319-96077-7_23. URL http://link.springer.com/10.
1007/978-3-319-96077-7_23. Series Title: Advances in Intelligent Systems
and Computing. 21, 22

[20] A.A. Bulgak and J.L. Sanders. Integrating a modified simulated annealing
algorithm with the simulation of a manufacturing system to optimize buffer
sizes in automatic assembly systems. In 1988 Winter Simulation Conference
Proceedings, pages 684–690, December 1988. https://doi.org/10.1109/
WSC.1988.716241. ISSN: null. 33, 34

[21] C Burstedde, K Klauck, A Schadschneider, and J Zittartz. Simulation of pedes-
trian dynamics using a two-dimensional cellular automaton. Physica A: Sta-
tistical Mechanics and its Applications, 295(3):507–525, June 2001. ISSN 0378-
4371. https://doi.org/10.1016/S0378-4371(01)00141-8. URL http://
www.sciencedirect.com/science/article/pii/S0378437101001418. 28,
30

[22] Vinicius Jurinic Cassol, Jovani Oliveira Brasil, Amyr B. Fortes Neto, Adriana
Braun, and Soraia Raupp Musse. An Approach to Validate Crowd Simulation
Software: A Case Study on CrowdSim. In 2015 14th Brazilian Symposium
on Computer Games and Digital Entertainment (SBGames), pages 192–203,
November 2015. https://doi.org/10.1109/SBGames.2015.11. ISSN: 2159-
6662. 38

[23] L. Chen, C. R. Jung, S. R. Musse, M. Moneimne, C. Wang,
R. Fruchter, V. Bazjanac, G. Chen, and N. I. Badler. Crowd Sim-
ulation Incorporating Thermal Environments and Responsive Behav-
iors. Presence: Teleoperators and Virtual Environments, 26(4):436–452,
November 2017. ISSN 1531-3263. https://doi.org/10.1162/PRES_a_
00308. URL https://direct.mit.edu/pvar/article/26/4/436/92674/
Crowd-Simulation-Incorporating-Thermal. 130, 132, 133, 134, 139, 149,
156

[24] Lei Chen, M. Tamer Özsu, and Vincent Oria. Robust and fast similarity
search for moving object trajectories. In Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, SIGMOD ’05,
pages 491–502, Baltimore, Maryland, June 2005. Association for Computing
Machinery. ISBN 978-1-59593-060-6. https://doi.org/10.1145/1066157.
1066213. URL https://doi.org/10.1145/1066157.1066213. 33, 35, 36,
37

[25] Aleena Chia. The metaverse, but not the way you think: game en-
gines and automation beyond game development. Critical Studies in Me-

https://doi.org/10.1007/978-3-319-96077-7_23
https://doi.org/10.1007/978-3-319-96077-7_23
http://link.springer.com/10.1007/978-3-319-96077-7_23
http://link.springer.com/10.1007/978-3-319-96077-7_23
https://doi.org/10.1109/WSC.1988.716241
https://doi.org/10.1109/WSC.1988.716241
https://doi.org/10.1016/S0378-4371(01)00141-8
http://www.sciencedirect.com/science/article/pii/S0378437101001418
http://www.sciencedirect.com/science/article/pii/S0378437101001418
https://doi.org/10.1109/SBGames.2015.11
https://doi.org/10.1162/PRES_a_00308
https://doi.org/10.1162/PRES_a_00308
https://direct.mit.edu/pvar/article/26/4/436/92674/Crowd-Simulation-Incorporating-Thermal
https://direct.mit.edu/pvar/article/26/4/436/92674/Crowd-Simulation-Incorporating-Thermal
https://doi.org/10.1145/1066157.1066213
https://doi.org/10.1145/1066157.1066213
https://doi.org/10.1145/1066157.1066213

190 BIBLIOGRAPHY

dia Communication, 39(3):191–200, May 2022. ISSN 1529-5036, 1479-
5809. https://doi.org/10.1080/15295036.2022.2080850. URL https:
//www.tandfonline.com/doi/full/10.1080/15295036.2022.2080850. 21,
22

[26] N. Chooramun, P.J. Lawrence, and E.R. Galea. Urban Scale Evacua-
tion Simulation Using buildingEXODUS. In Richard D. Peacock, Erica D.
Kuligowski, and Jason D. Averill, editors, Pedestrian and Evacuation Dy-
namics, pages 449–458. Springer US, Boston, MA, 2016. ISBN 978-1-
4419-9724-1. https://doi.org/10.1007/978-1-4419-9725-8_40. URL
http://link.springer.com/10.1007/978-1-4419-9725-8_40. 17

[27] Pablo de Heras Ciechomski, Sébastien Schertenleib, Jonathan Maïm, and
Daniel Thalmann. Reviving the Roman Odeon of Aphrodisias: Dynamic
Animation and Variety Control of Crowds in Virtual Heritage. Technical
report, EPFL, VRLab, CH-1015, Lausanne, Switzerland, 2005. 16

[28] A. Colas, W. van Toll, K. Zibrek, L. Hoyet, A.-H. Olivier, and
J. Pettré. Interaction Fields: Intuitive Sketch-based Steering Behav-
iors for Crowd Simulation. Computer Graphics Forum, 41(2):521–534,
2022. ISSN 1467-8659. https://doi.org/10.1111/cgf.14491. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14491. _-
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14491. 47

[29] Francois Cournoyer. Massive Crowd on Assassin’s Creed Unity:
AI Recycling, 2015. URL https://www.gdcvault.com/play/1022141/
Massive-Crowd-on-Assassin-s. 19, 20

[30] Xiao Cui and Hao Shi. A*-based pathfinding in modern computer games.
International Journal of Computer Science and Network Security, 11(1):125–
130, 2011. Publisher: International Journal of Computer Science and Network
Security (IJCSNS). 29

[31] Xiao Cui and Hao Shi. An Overview of Pathfinding in Navigation Mesh.
IJCSNS, 12(12):4, 2012. 28, 29

[32] Sean Curtis, Andrew Best, and Dinesh Manocha. Menge: A Modular
Framework for Simulating Crowd Movement. Collective Dynamics, 1:1–40,
March 2016. ISSN 2366-8539. https://doi.org/10.17815/CD.2016.1. URL
https://collective-dynamics.eu/index.php/cod/article/view/A1. 39,
40, 43, 44, 49, 86, 91, 150, 178

[33] Michelangelo Diamanti and Hannes Högni Vilhjálmsson. Social Crowd Simula-
tion: The Challenge of Fragmentation. In 2021 IEEE International Conference
on Artificial Intelligence and Virtual Reality (AIVR), pages 145–149, Novem-
ber 2021. https://doi.org/10.1109/AIVR52153.2021.00034. 5

[34] Michelangelo Diamanti and Hannes Högni Vilhjálmsson. Extending the
menge crowd simulation framework: visual authoring in unity. In Proceedings
of the 22nd ACM International Conference on Intelligent Virtual Agents,

https://doi.org/10.1080/15295036.2022.2080850
https://www.tandfonline.com/doi/full/10.1080/15295036.2022.2080850
https://www.tandfonline.com/doi/full/10.1080/15295036.2022.2080850
https://doi.org/10.1007/978-1-4419-9725-8_40
http://link.springer.com/10.1007/978-1-4419-9725-8_40
https://doi.org/10.1111/cgf.14491
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14491
https://www.gdcvault.com/play/1022141/Massive-Crowd-on-Assassin-s
https://www.gdcvault.com/play/1022141/Massive-Crowd-on-Assassin-s
https://doi.org/10.17815/CD.2016.1
https://collective-dynamics.eu/index.php/cod/article/view/A1
https://doi.org/10.1109/AIVR52153.2021.00034

BIBLIOGRAPHY 191

pages 1–3, Faro Portugal, September 2022. ACM. ISBN 978-1-4503-9248-8.
https://doi.org/10.1145/3514197.3549698. URL https://dl.acm.org/
doi/10.1145/3514197.3549698. 5

[35] Ning Ding and Chang Sun. Experimental study of leader-and-follower be-
haviours during emergency evacuation. Fire Safety Journal, 117:103189,
October 2020. ISSN 03797112. https://doi.org/10.1016/j.firesaf.
2020.103189. URL https://linkinghub.elsevier.com/retrieve/pii/
S0379711219305521. 12, 14

[36] Simon Dobbyn, John Hamill, Keith O’Conor, and Carol O’Sullivan. Geopos-
tors: A Real-Time Geometry / Impostor Crowd Rendering System. 19

[37] Richard Dosselmann and Xue Dong Yang. A comprehensive assessment
of the structural similarity index. Signal, Image and Video Processing, 5
(1):81–91, March 2011. ISSN 1863-1703, 1863-1711. https://doi.org/
10.1007/s11760-009-0144-1. URL http://link.springer.com/10.1007/
s11760-009-0144-1. 67

[38] Johannes Erfurt, Christian R. Helmrich, Sebastian Bosse, Heiko Schwarz,
Detlev Marpe, and Thomas Wiegand. A Study of the Perceptually Weighted
Peak Signal-To-Noise Ratio (WPSNR) for Image Compression. In 2019
IEEE International Conference on Image Processing (ICIP), pages 2339–2343,
September 2019. https://doi.org/10.1109/ICIP.2019.8803307. ISSN:
2381-8549. 67

[39] Michael A. Erskine, Mohammed Khojah, and Alex E. McDaniel. Loca-
tion selection using heat maps: Relative advantage, task-technology fit,
and decision-making performance. Computers in Human Behavior, 101:
151–162, December 2019. ISSN 07475632. https://doi.org/10.1016/
j.chb.2019.07.014. URL https://linkinghub.elsevier.com/retrieve/
pii/S0747563219302572. 53

[40] Victor Erukhimov. Avatarsdk- Create avatar for Metaverse, 2017. URL
https://avatarsdk.com/. 21, 24

[41] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. Density-
based spatial clustering of applications with noise. In Int. Conf. knowledge
discovery and data mining, volume 240, 1996. Issue: 6. 176

[42] Zhixin Fang, Libai Cai, and Gang Wang. MetaHuman Creator The starting
point of the metaverse. In 2021 International Symposium on Computer
Technology and Information Science (ISCTIS), pages 154–157, June 2021.
https://doi.org/10.1109/ISCTIS51085.2021.00040. 21, 22

[43] Poul O Fanger and others. Thermal comfort. Analysis and applications in
environmental engineering. Thermal comfort. Analysis and applications in
environmental engineering., 1970. Publisher: Copenhagen: Danish Technical
Press. 133

https://doi.org/10.1145/3514197.3549698
https://dl.acm.org/doi/10.1145/3514197.3549698
https://dl.acm.org/doi/10.1145/3514197.3549698
https://doi.org/10.1016/j.firesaf.2020.103189
https://doi.org/10.1016/j.firesaf.2020.103189
https://linkinghub.elsevier.com/retrieve/pii/S0379711219305521
https://linkinghub.elsevier.com/retrieve/pii/S0379711219305521
https://doi.org/10.1007/s11760-009-0144-1
https://doi.org/10.1007/s11760-009-0144-1
http://link.springer.com/10.1007/s11760-009-0144-1
http://link.springer.com/10.1007/s11760-009-0144-1
https://doi.org/10.1109/ICIP.2019.8803307
https://doi.org/10.1016/j.chb.2019.07.014
https://doi.org/10.1016/j.chb.2019.07.014
https://linkinghub.elsevier.com/retrieve/pii/S0747563219302572
https://linkinghub.elsevier.com/retrieve/pii/S0747563219302572
https://avatarsdk.com/
https://doi.org/10.1109/ISCTIS51085.2021.00040

192 BIBLIOGRAPHY

[44] Jolyon J. Faria, Stefan Krause, and Jens Krause. Collective behavior in
road crossing pedestrians: the role of social information. Behavioral Ecol-
ogy, 21(6):1236–1242, 2010. ISSN 1465-7279, 1045-2249. https://doi.
org/10.1093/beheco/arq141. URL https://academic.oup.com/beheco/
article-lookup/doi/10.1093/beheco/arq141. 12

[45] H. Faroqi and M.-S. Mesgari. AGENT-BASED CROWD SIMULATION
CONSIDERING EMOTION CONTAGION FOR EMERGENCY EVACUA-
TION PROBLEM. In ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, volume XL-1-W5, pages
193–196. Copernicus GmbH, December 2015. https://doi.org/https:
//doi.org/10.5194/isprsarchives-XL-1-W5-193-2015. URL
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.
net/XL-1-W5/193/2015/. 26, 168, 170

[46] Tian Feng, Lap-Fai Yu, Sai-Kit Yeung, KangKang Yin, and Kun Zhou. Crowd-
driven mid-scale layout design. ACM Transactions on Graphics, 35(4):1–14,
July 2016. ISSN 07300301. https://doi.org/10.1145/2897824.2925894.
URL http://dl.acm.org/citation.cfm?doid=2897824.2925894. 16, 17

[47] Paolo Fiorini and Zvi Shiller. Motion Planning in Dynamic Environments
Using Velocity Obstacles. The International Journal of Robotics Research, 17
(7):760–772, July 1998. ISSN 0278-3649, 1741-3176. https://doi.org/10.
1177/027836499801700706. URL http://journals.sagepub.com/doi/10.
1177/027836499801700706. 30, 31

[48] Subir K. Ghosh and Partha P. Goswami. Unsolved problems in visi-
bility graphs of points, segments, and polygons. ACM Computing Sur-
veys, 46(2):1–29, November 2013. ISSN 0360-0300, 1557-7341. https:
//doi.org/10.1145/2543581.2543589. URL https://dl.acm.org/doi/
10.1145/2543581.2543589. 28

[49] P. Glardon, R. Boulic, and D. Thalmann. PCA-based walking engine using
motion capture data. In Proceedings Computer Graphics International, 2004.,
pages 292–298, June 2004. https://doi.org/10.1109/CGI.2004.1309224.
ISSN: 1530-1052. 19, 20

[50] Julio Godoy, Ioannis Karamouzas, Stephen J Guy, and Maria Gini. Adap-
tive Learning for Multi-Agent Navigation. International Conference on Au-
tonomous Agents and Multiagent Systems, page 9, 2015. 30, 32

[51] Erving Goffman. Behavior in Public Places; Notes on the Social Organization
of Gatherings. The Free Press, New York, NY, 1963. ISBN 978-0-02-911940-2.
9, 14

[52] Erving Goffman. Behavior in public places. Simon and Schuster, 2008. 11

[53] David Goldsman and Barry L Nelson. Ranking, selection and multiple
comparisons in computer simulation. In Proceedings of Winter Simulation
Conference, pages 192–199. IEEE, 1994. 33

https://doi.org/10.1093/beheco/arq141
https://doi.org/10.1093/beheco/arq141
https://academic.oup.com/beheco/article-lookup/doi/10.1093/beheco/arq141
https://academic.oup.com/beheco/article-lookup/doi/10.1093/beheco/arq141
https://doi.org/https://doi.org/10.5194/isprsarchives-XL-1-W5-193-2015
https://doi.org/https://doi.org/10.5194/isprsarchives-XL-1-W5-193-2015
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W5/193/2015/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W5/193/2015/
https://doi.org/10.1145/2897824.2925894
http://dl.acm.org/citation.cfm?doid=2897824.2925894
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1177/027836499801700706
http://journals.sagepub.com/doi/10.1177/027836499801700706
http://journals.sagepub.com/doi/10.1177/027836499801700706
https://doi.org/10.1145/2543581.2543589
https://doi.org/10.1145/2543581.2543589
https://dl.acm.org/doi/10.1145/2543581.2543589
https://dl.acm.org/doi/10.1145/2543581.2543589
https://doi.org/10.1109/CGI.2004.1309224

BIBLIOGRAPHY 193

[54] Luis Rene Montana Gonzalez and Steve Maddock. Sketching for Real-time
Control of Crowd Simulations. Computer Graphics and Visual Computing
(CGVC), page 8 pages, 2017. https://doi.org/10.2312/CGVC.20171282.
URL https://diglib.eg.org/handle/10.2312/cgvc20171282. Artwork
Size: 8 pages ISBN: 9783038680505 Publisher: The Eurographics Associ-
ation. 45, 47

[55] David Gosselin, Pedro V Sander, and Jason L Mitchell. Drawing a crowd.
ShaderX3 (CHARLES RIVER MEDIA), pages 505–517, 2005. Publisher:
Citeseer. 19

[56] William Griffit and Russell Veitch. Hot and crowded: Influence of
population density and temperature on interpersonal affective behav-
ior. Journal of Personality and Social Psychology, 17(1):92–98, Jan-
uary 1971. ISSN 0022-3514. https://doi.org/10.1037/h0030458.
URL https://search.ebscohost.com/login.aspx?direct=true&db=pdh&
AN=1971-09845-001&site=ehost-live. Publisher: American Psychological
Association. 164

[57] Qin Gu and Zhigang Deng. Generating Freestyle Group Formations in Agent-
Based Crowd Simulations. IEEE Computer Graphics and Applications, 33
(1):20–31, January 2013. ISSN 1558-1756. https://doi.org/10.1109/MCG.
2011.87. 45, 47

[58] Stephen J. Guy, Jur van den Berg, Wenxi Liu, Rynson Lau, Ming C. Lin,
and Dinesh Manocha. A statistical similarity measure for aggregate crowd
dynamics. ACM Transactions on Graphics, 31(6):1, November 2012. ISSN
07300301. https://doi.org/10.1145/2366145.2366209. URL http://dl.
acm.org/citation.cfm?doid=2366145.2366209. 36, 37

[59] S Gwynne, E. R Galea, P. J Lawrence, and L Filippidis. Modelling occupant
interaction with fire conditions using the buildingEXODUS evacuation model.
Fire Safety Journal, 36(4):327–357, June 2001. ISSN 0379-7112. https://doi.
org/10.1016/S0379-7112(00)00060-6. URL http://www.sciencedirect.
com/science/article/pii/S0379711200000606. 17

[60] S. Gwynne, E.R. Galea, M. Owen, P.J. Lawrence, and L. Filippidis. A
systematic comparison of buildingEXODUS predictions with experimen-
tal data from the Stapelfeldt trials and the Milburn House evacuation.
Applied Mathematical Modelling, 29(9):818–851, September 2005. ISSN
0307904X. https://doi.org/10.1016/j.apm.2004.11.005. URL https:
//linkinghub.elsevier.com/retrieve/pii/S0307904X04001696. 16, 17

[61] Hörður Már Hafsteinsson. Procedural city generator for research in the field
of restorative environmental design. Thesis, Reykjavík University, Reykjavík,
June 2019. Accepted: 2019-06-12T13:46:02Z. 130, 131, 132, 137, 175

[62] Edmund T Hall and Edward T Hall. The hidden dimension, volume 609.
Anchor, 1966. 8, 11

https://doi.org/10.2312/CGVC.20171282
https://diglib.eg.org/handle/10.2312/cgvc20171282
https://doi.org/10.1037/h0030458
https://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=1971-09845-001&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=1971-09845-001&site=ehost-live
https://doi.org/10.1109/MCG.2011.87
https://doi.org/10.1109/MCG.2011.87
https://doi.org/10.1145/2366145.2366209
http://dl.acm.org/citation.cfm?doid=2366145.2366209
http://dl.acm.org/citation.cfm?doid=2366145.2366209
https://doi.org/10.1016/S0379-7112(00)00060-6
https://doi.org/10.1016/S0379-7112(00)00060-6
http://www.sciencedirect.com/science/article/pii/S0379711200000606
http://www.sciencedirect.com/science/article/pii/S0379711200000606
https://doi.org/10.1016/j.apm.2004.11.005
https://linkinghub.elsevier.com/retrieve/pii/S0307904X04001696
https://linkinghub.elsevier.com/retrieve/pii/S0307904X04001696

194 BIBLIOGRAPHY

[63] Edward T Hall, Ray L Birdwhistell, Bernhard Bock, Paul Bohannan,
A Richard Diebold Jr, Marshall Durbin, Munro S Edmonson, JL Fischer, Dell
Hymes, Solon T Kimball, and others. Proxemics [and comments and replies].
Current anthropology, 9(2/3):83–108, 1968. 136

[64] Daniel Harabor and Adi Botea. Breaking Path Symmetries on 4-Connected
Grid Maps. Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 6(1), October 2010. ISSN 2334-0924. URL
https://ojs.aaai.org/index.php/AIIDE/article/view/12393. Number:
1. 28

[65] Elaine Hatfield, John T Cacioppo, and Richard L Rapson. Emotional conta-
gion. Current directions in psychological science, 2(3):96–100, 1993. Publisher:
Sage Publications Sage CA: Los Angeles, CA. 13, 14

[66] Dirk Helbing and Péter Molnár. Social force model for pedestrian dynamics.
Physical Review E, 51(5):4282–4286, May 1995. https://doi.org/10.1103/
PhysRevE.51.4282. URL https://link.aps.org/doi/10.1103/PhysRevE.
51.4282. 30, 31, 163

[67] Dirk Helbing, Illes J Farkas, Peter Molnar, and Tamas Vicsek. Simulation
of Pedestrian Crowds in Normal and Evacuation Situations. Pedestrian and
evacuation dynamics, 21(2):21–58, 2002. 16, 17

[68] Dirk Helbing, Lubos Buzna, Anders Johansson, and Torsten Werner. Self-
Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and De-
sign Solutions. Transportation Science, 39(1):1–24, February 2005. ISSN
0041-1655, 1526-5447. https://doi.org/10.1287/trsc.1040.0108. URL
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1040.0108. 16,
17

[69] Michael A. Hogg and R. Scott Tindale, editors. Group processes. Blackwell
handbook of social psychology. Blackwell Publishers, Malden, MA, 2001. ISBN
978-0-631-20865-5. 13, 14

[70] Wenjia Huang and Demetri Terzopoulos. Door and Doorway Etiquette for
Virtual Humans. IEEE Transactions on Visualization and Computer Graphics,
26(3):1502–1517, March 2020. ISSN 1941-0506. https://doi.org/10.1109/
TVCG.2018.2874050. Conference Name: IEEE Transactions on Visualization
and Computer Graphics. 26, 27, 168, 171

[71] Pall Jakob Lindal. Future Cities: Using virtual technology to design restorative
residential neighborhoods. In International Conference on Environmental
Psychology, Plymouth, UK, 2019. 131

[72] Zhixing Jin and Bir Bhanu. Optimizing crowd simulation based on real
video data. In 2013 IEEE International Conference on Image Processing,
pages 3186–3190, September 2013. https://doi.org/10.1109/ICIP.2013.
6738656. ISSN: 2381-8549. 35

https://ojs.aaai.org/index.php/AIIDE/article/view/12393
https://doi.org/10.1103/PhysRevE.51.4282
https://doi.org/10.1103/PhysRevE.51.4282
https://link.aps.org/doi/10.1103/PhysRevE.51.4282
https://link.aps.org/doi/10.1103/PhysRevE.51.4282
https://doi.org/10.1287/trsc.1040.0108
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1040.0108
https://doi.org/10.1109/TVCG.2018.2874050
https://doi.org/10.1109/TVCG.2018.2874050
https://doi.org/10.1109/ICIP.2013.6738656
https://doi.org/10.1109/ICIP.2013.6738656

BIBLIOGRAPHY 195

[73] Susi Juniastuti, Moch Fachri, Supeno Mardi Susiki Nugroho, and Mochammad
Hariadi. Crowd navigation using leader-follower algorithm based Reciprocal
Velocity Obstacles. In 2016 International Symposium on Electronics and
Smart Devices (ISESD), pages 148–152, November 2016. https://doi.org/
10.1109/ISESD.2016.7886709. ISSN: null. 26

[74] Marcelo Kallmann and Stacy Marsella. Hierarchical Motion Controllers
for Real-Time Autonomous Virtual Humans. In David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen,
Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard
Weikum, Themis Panayiotopoulos, Jonathan Gratch, Ruth Aylett, Daniel
Ballin, Patrick Olivier, and Thomas Rist, editors, Intelligent Virtual Agents,
volume 3661, pages 253–265. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005. ISBN 978-3-540-28738-4 978-3-540-28739-1. https://doi.org/10.
1007/11550617_22. URL http://link.springer.com/10.1007/11550617_
22. Series Title: Lecture Notes in Computer Science. 179

[75] Mubbasir Kapadia, Kai Ninomiya, Alexander Shoulson, Francisco Garcia,
and Norman Badler. Constraint-Aware Navigation in Dynamic Environ-
ments. In Proceedings of Motion on Games - MIG ’13, pages 111–120,
Dublin 2, Ireland, 2013. ACM Press. ISBN 978-1-4503-2546-2. https://
doi.org/10.1145/2522628.2522654. URL http://dl.acm.org/citation.
cfm?doid=2522628.2522654. 28

[76] Nahid Karimaghalou, Ulysses Bernardet, and Steve DiPaola. A model for
social spatial behavior in virtual characters: A model for social spatial behavior
in virtual characters. Computer Animation and Virtual Worlds, 25(3-4):505–
517, May 2014. ISSN 15464261. https://doi.org/10.1002/cav.1600. URL
http://doi.wiley.com/10.1002/cav.1600. 26, 168, 169

[77] Effie Karuzaki, Nikolaos Partarakis, Nikolaos Patsiouras, Emmanouil Zid-
ianakis, Antonios Katzourakis, Antreas Pattakos, Danae Kaplanidi, Evan-
gelia Baka, Nedjma Cadi, Nadia Magnenat-Thalmann, Chris Ringas, Eleana
Tasiopoulou, and Xenophon Zabulis. Realistic Virtual Humans for Cultural
Heritage Applications. Heritage, 4(4):4148–4171, November 2021. ISSN
2571-9408. https://doi.org/10.3390/heritage4040228. URL https:
//www.mdpi.com/2571-9408/4/4/228. 21, 22

[78] Adam Kendon. Conducting interaction: Patterns of behavior in focused
encounters, volume 7. CUP Archive, 1990. 9, 10, 14, 54

[79] Adam Kendon. Spacing and Orientation in Co-present Interaction. In
Anna Esposito, Nick Campbell, Carl Vogel, Amir Hussain, and Anton Ni-
jholt, editors, Development of Multimodal Interfaces: Active Listening and
Synchrony, volume 5967, pages 1–15. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010. ISBN 978-3-642-12396-2 978-3-642-12397-9. https:
//doi.org/10.1007/978-3-642-12397-9_1. URL http://link.springer.

https://doi.org/10.1109/ISESD.2016.7886709
https://doi.org/10.1109/ISESD.2016.7886709
https://doi.org/10.1007/11550617_22
https://doi.org/10.1007/11550617_22
http://link.springer.com/10.1007/11550617_22
http://link.springer.com/10.1007/11550617_22
https://doi.org/10.1145/2522628.2522654
https://doi.org/10.1145/2522628.2522654
http://dl.acm.org/citation.cfm?doid=2522628.2522654
http://dl.acm.org/citation.cfm?doid=2522628.2522654
https://doi.org/10.1002/cav.1600
http://doi.wiley.com/10.1002/cav.1600
https://doi.org/10.3390/heritage4040228
https://www.mdpi.com/2571-9408/4/4/228
https://www.mdpi.com/2571-9408/4/4/228
https://doi.org/10.1007/978-3-642-12397-9_1
https://doi.org/10.1007/978-3-642-12397-9_1
http://link.springer.com/10.1007/978-3-642-12397-9_1
http://link.springer.com/10.1007/978-3-642-12397-9_1

196 BIBLIOGRAPHY

com/10.1007/978-3-642-12397-9_1. Series Title: Lecture Notes in Com-
puter Science. 10

[80] Adam Kendon, Thomas A. Sebeok, and Jean Umiker-Sebeok, editors. Non-
verbal Communication, Interaction, and Gesture. Approaches to Semiotics.
Mouton Publishers, The Hague, 1981. ISBN 90-279-3489-4. 14

[81] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671–680, May 1983. ISSN 0036-8075, 1095-
9203. https://doi.org/10.1126/science.220.4598.671. URL https://
science.sciencemag.org/content/220/4598/671. Publisher: American
Association for the Advancement of Science Section: Articles. 33, 34

[82] Benedikt Kleinmeier, Benedikt Zönnchen, Marion Gödel, and Gerta Köster.
Vadere: An open-source simulation framework to promote interdisci-
plinary understanding, July 2019. URL http://arxiv.org/abs/1907.09520.
arXiv:1907.09520 [cs]. 38, 39, 42, 44

[83] Kang Hoon Lee, Myung Geol Choi, Qyoun Hong, and Jehee Lee. Group behav-
ior from video: a data-driven approach to crowd simulation. In Proceedings of
the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation,
SCA ’07, pages 109–118, San Diego, California, August 2007. Eurographics
Association. ISBN 978-1-59593-624-0. 26

[84] Marilena Lemonari, Rafael Blanco, Panayiotis Charalambous, Nuria
Pelechano, Marios Avraamides, Julien Pettré, and Yiorgos Chrysanthou.
Authoring Virtual Crowds: A Survey. Computer Graphics Forum, 41
(2):677–701, 2022. ISSN 1467-8659. https://doi.org/10.1111/cgf.
14506. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.
14506. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14506.
45, 48

[85] Cheng-Te Li and Shou-De Lin. Social flocks: a crowd simulation framework
for social network generation, community detection, and collective behavior
modeling. In Proceedings of the 17th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, KDD ’11, pages 765–768, San
Diego, California, USA, August 2011. Association for Computing Machin-
ery. ISBN 978-1-4503-0813-7. https://doi.org/10.1145/2020408.2020531.
URL https://doi.org/10.1145/2020408.2020531. 25, 26, 168, 169

[86] Zhong Li, Lele Chen, Celong Liu, Fuyao Zhang, Zekun Li, Yu Gao, Yuanzhou
Ha, Chenliang Xu, Shuxue Quan, and Yi Xu. Animated 3D human avatars
from a single image with GAN-based texture inference. Computers & Graph-
ics, 95:81–91, April 2021. ISSN 00978493. https://doi.org/10.1016/
j.cag.2021.01.002. URL https://linkinghub.elsevier.com/retrieve/
pii/S0097849321000029. 21, 24

[87] Pall Jackob Lindal, H. Miri, K. R. Johannsdottir, T. Hartig, and Hannes Högni
Vilhjalmsson. Cities that sustain us: Using virtual reality to test the restorative

http://link.springer.com/10.1007/978-3-642-12397-9_1
http://link.springer.com/10.1007/978-3-642-12397-9_1
http://link.springer.com/10.1007/978-3-642-12397-9_1
http://link.springer.com/10.1007/978-3-642-12397-9_1
https://doi.org/10.1126/science.220.4598.671
https://science.sciencemag.org/content/220/4598/671
https://science.sciencemag.org/content/220/4598/671
http://arxiv.org/abs/1907.09520
https://doi.org/10.1111/cgf.14506
https://doi.org/10.1111/cgf.14506
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14506
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14506
https://doi.org/10.1145/2020408.2020531
https://doi.org/10.1145/2020408.2020531
https://doi.org/10.1016/j.cag.2021.01.002
https://doi.org/10.1016/j.cag.2021.01.002
https://linkinghub.elsevier.com/retrieve/pii/S0097849321000029
https://linkinghub.elsevier.com/retrieve/pii/S0097849321000029

BIBLIOGRAPHY 197

potential of future urban environments. In 11th Biennial Conference on
Environmental Psychology, Groningen, The Netherlands, 2015. 131

[88] Shiguang Liu and Dinesh Manocha. Sound Synthesis, Propagation, and
Rendering: A Survey, May 2021. URL http://arxiv.org/abs/2011.05538.
arXiv:2011.05538 [cs]. 55

[89] Nadia Magnenat-Thalmann, Hyewon Seo, and Frederic Cordier. Auto-
matic modeling of virtual humans and body clothing. Journal of Com-
puter Science and Technology, 19(5):575–584, September 2004. ISSN 1000-
9000, 1860-4749. https://doi.org/10.1007/BF02945583. URL http:
//link.springer.com/10.1007/BF02945583. 19

[90] Yan Mao, Shanwen Yang, Zuning Li, and Yongjian Li. Personality trait and
group emotion contagion based crowd simulation for emergency evacuation.
Multimedia Tools and Applications, May 2018. ISSN 1573-7721. https://
doi.org/10.1007/s11042-018-6069-3. URL https://doi.org/10.1007/
s11042-018-6069-3. 26, 168, 169

[91] C. D. Tharindu Mathew, Paulo R. Knob, Soraia Raupp Musse, and
Daniel G. Aliaga. Urban Walkability Design Using Virtual Population
Simulation. Computer Graphics Forum, 38(1):455–469, February 2019.
ISSN 0167-7055, 1467-8659. https://doi.org/10.1111/cgf.13585. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13585. 16, 17

[92] Jonathan Maïm, Simon Haegler, Barbara Yersin, Pascal Mueller, Daniel
Thalmann, and Luc Van Gool. Populating Ancient Pompeii with Crowds
of Virtual Romans. In Proceedings of the 8th International Symposium on
Virtual Reality, Archeology and Cultural Heritage-VAST, page 8, 2007. 16

[93] James McIlveen, Steve Maddock, Peter Heywood, and Paul Richmond. PED:
Pedestrian Environment Designer. Computer Graphics and Visual Computing
(CGVC), page 8 pages, 2016. ISSN -. https://doi.org/10.2312/CGVC.
20161304. URL https://diglib.eg.org/handle/10.2312/cgvc20161304.
Artwork Size: 8 pages ISBN: 9783038680222 Publisher: The Eurographics
Association. 45, 46

[94] Daniel N McIntosh, Daniel Druckman, and Robert B Zajonc. Socially induced
affect. Learning, remembering, believing: Enhancing human performance,
pages 251–276, 1994. 13, 14

[95] Tim McLaughlin, Larry Cutler, and David Coleman. Character rigging,
deformations, and simulations in film and game production. In ACM
SIGGRAPH 2011 Courses on - SIGGRAPH ’11, pages 1–18, Vancouver,
British Columbia, Canada, 2011. ACM Press. ISBN 978-1-4503-0967-7.
https://doi.org/10.1145/2037636.2037641. URL http://dl.acm.org/
citation.cfm?doid=2037636.2037641. 53

[96] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a
Feather: Homophily in Social Networks. Annual Review of Sociology, 27

http://arxiv.org/abs/2011.05538
https://doi.org/10.1007/BF02945583
http://link.springer.com/10.1007/BF02945583
http://link.springer.com/10.1007/BF02945583
https://doi.org/10.1007/s11042-018-6069-3
https://doi.org/10.1007/s11042-018-6069-3
https://doi.org/10.1007/s11042-018-6069-3
https://doi.org/10.1007/s11042-018-6069-3
https://doi.org/10.1111/cgf.13585
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13585
https://doi.org/10.2312/CGVC.20161304
https://doi.org/10.2312/CGVC.20161304
https://diglib.eg.org/handle/10.2312/cgvc20161304
https://doi.org/10.1145/2037636.2037641
http://dl.acm.org/citation.cfm?doid=2037636.2037641
http://dl.acm.org/citation.cfm?doid=2037636.2037641

198 BIBLIOGRAPHY

(1):415–444, August 2001. ISSN 0360-0572, 1545-2115. https://doi.org/
10.1146/annurev.soc.27.1.415. URL https://www.annualreviews.org/
doi/10.1146/annurev.soc.27.1.415. 12, 13, 14

[97] Mehdi Moussaïd, Niriaska Perozo, Simon Garnier, Dirk Helbing, and Guy
Theraulaz. The Walking Behaviour of Pedestrian Social Groups and Its
Impact on Crowd Dynamics. PLoS ONE, 5(4):e10047, April 2010. ISSN 1932-
6203. https://doi.org/10.1371/journal.pone.0010047. URL https://
dx.plos.org/10.1371/journal.pone.0010047. 38, 51

[98] Mehdi Moussaïd, Mubbasir Kapadia, Tyler Thrash, Robert W. Sum-
ner, Markus Gross, Dirk Helbing, and Christoph Hölscher. Crowd be-
haviour during high-stress evacuations in an immersive virtual environ-
ment. Journal of The Royal Society Interface, 13(122):20160414, September
2016. ISSN 1742-5689, 1742-5662. https://doi.org/10.1098/rsif.2016.
0414. URL http://rsif.royalsocietypublishing.org/lookup/doi/10.
1098/rsif.2016.0414. 16, 17

[99] A. Natapov and D. Fisher-Gewirtzman. Visibility of urban activities and
pedestrian routes: An experiment in a virtual environment. Computers,
Environment and Urban Systems, 58:60–70, July 2016. ISSN 01989715.
https://doi.org/10.1016/j.compenvurbsys.2016.03.007. URL https:
//linkinghub.elsevier.com/retrieve/pii/S0198971516300370. 122

[100] M. E. J. Newman. The Structure and Function of Complex Networks. SIAM
Review, 45(2):167–256, January 2003. ISSN 0036-1445, 1095-7200. https://
doi.org/10.1137/S003614450342480. URL http://epubs.siam.org/doi/
10.1137/S003614450342480. 13

[101] C. Niederberger and M. Gross. Hierarchical and Heterogenous Reactive
Agents for Real-Time Applications. Computer Graphics Forum, 22(3):
323–331, September 2003. ISSN 0167-7055, 1467-8659. https://doi.
org/10.1111/1467-8659.00679. URL http://doi.wiley.com/10.1111/
1467-8659.00679. 26

[102] Stuart O’Connor, Fotis Liarokapis, and Christopher Peters. An initial study to
assess the perceived realism of agent crowd behaviour in a virtual city. In 2013
5th International Conference on Games and Virtual Worlds for Serious Appli-
cations (VS-GAMES), pages 1–8, Poole, September 2013. IEEE. ISBN 978-
1-4799-0965-0. https://doi.org/10.1109/VS-GAMES.2013.6624220. URL
http://ieeexplore.ieee.org/document/6624220/. 16, 17

[103] Jan Ondřej, Julien Pettré, Anne-Hélène Olivier, and Stéphane Donikian.
A synthetic-vision based steering approach for crowd simulation. ACM
Transactions on Graphics (TOG), 29(4):123:1–123:9, July 2010. ISSN 0730-
0301. https://doi.org/10.1145/1778765.1778860. URL https://doi.
org/10.1145/1778765.1778860. 30, 31

[104] Mohd Fauzi Othman, Masoud Samadi, and Mehran Halimi Asl. Simulation
of Dynamic Path Planning for Real-Time Vision-Base Robots. In Khairuddin

https://doi.org/10.1146/annurev.soc.27.1.415
https://doi.org/10.1146/annurev.soc.27.1.415
https://www.annualreviews.org/doi/10.1146/annurev.soc.27.1.415
https://www.annualreviews.org/doi/10.1146/annurev.soc.27.1.415
https://doi.org/10.1371/journal.pone.0010047
https://dx.plos.org/10.1371/journal.pone.0010047
https://dx.plos.org/10.1371/journal.pone.0010047
https://doi.org/10.1098/rsif.2016.0414
https://doi.org/10.1098/rsif.2016.0414
http://rsif.royalsocietypublishing.org/lookup/doi/10.1098/rsif.2016.0414
http://rsif.royalsocietypublishing.org/lookup/doi/10.1098/rsif.2016.0414
https://doi.org/10.1016/j.compenvurbsys.2016.03.007
https://linkinghub.elsevier.com/retrieve/pii/S0198971516300370
https://linkinghub.elsevier.com/retrieve/pii/S0198971516300370
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
http://epubs.siam.org/doi/10.1137/S003614450342480
http://epubs.siam.org/doi/10.1137/S003614450342480
https://doi.org/10.1111/1467-8659.00679
https://doi.org/10.1111/1467-8659.00679
http://doi.wiley.com/10.1111/1467-8659.00679
http://doi.wiley.com/10.1111/1467-8659.00679
https://doi.org/10.1109/VS-GAMES.2013.6624220
http://ieeexplore.ieee.org/document/6624220/
https://doi.org/10.1145/1778765.1778860
https://doi.org/10.1145/1778765.1778860
https://doi.org/10.1145/1778765.1778860

BIBLIOGRAPHY 199

Omar, Md Jan Nordin, Prahlad Vadakkepat, Anton Satria Prabuwono, Siti
Norul Huda Sheikh Abdullah, Jacky Baltes, Shamsudin Mohd Amin, Wan
Zuha Wan Hassan, and Mohammad Faidzul Nasrudin, editors, Intelligent
Robotics Systems: Inspiring the NEXT, volume 376, pages 1–10. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-40408-5 978-
3-642-40409-2. https://doi.org/10.1007/978-3-642-40409-2_1. URL
http://link.springer.com/10.1007/978-3-642-40409-2_1. Series Title:
Communications in Computer and Information Science. 28

[105] Claudio Pedica and Hannes Vilhjálmsson. Social Perception and Steer-
ing for Online Avatars. In Helmut Prendinger, James Lester, and Mit-
suru Ishizuka, editors, Intelligent Virtual Agents, volume 5208, pages 104–
116. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-
540-85482-1. https://doi.org/10.1007/978-3-540-85483-8_11. URL
http://link.springer.com/10.1007/978-3-540-85483-8_11. 25, 26

[106] Claudio Pedica, Michelangelo Diamanti, and Hannes Högni Vilhjálmsson.
Assessing the Disturbance from Overcrowding in Outdoor Nature Experi-
ences. In Extended Abstracts of the 2021 CHI Conference on Human Factors
in Computing Systems, number 58, pages 1–8. Association for Computing
Machinery, New York, NY, USA, May 2021. ISBN 978-1-4503-8095-9. URL
https://doi.org/10.1145/3411763.3443439. 5, 122

[107] N. Pelechano and N. I. Badler. Modeling Crowd and Trained Leader Behavior
during Building Evacuation. IEEE Computer Graphics and Applications, 26
(6):80–86, November 2006. ISSN 0272-1716. https://doi.org/10.1109/MCG.
2006.133. 16, 17, 26

[108] Nuria Pelechano and Carlos Fuentes. Hierarchical path-finding for Navigation
Meshes (HNA∗). Computers & Graphics, 59:68–78, October 2016. ISSN 0097-
8493. https://doi.org/10.1016/j.cag.2016.05.023. URL http://www.
sciencedirect.com/science/article/pii/S0097849316300668. 28, 29

[109] Nuria Pelechano, Bernhard Spanlang, and Alejandro Beacco. Avatar Loco-
motion in Crowd Simulation. International Journal of Virtual Reality, 10(1):
13–19, January 2011. ISSN 1081-1451. https://doi.org/10.20870/IJVR.
2011.10.1.2796. URL https://ijvr.eu/article/view/2796. 19, 20

[110] Sebastian Pütz, Thomas Wiemann, Jochen Sprickerhof, and Joachim
Hertzberg. 3D Navigation Mesh Generation for Path Planning in Uneven
Terrain. IFAC-PapersOnLine, 49(15):212–217, January 2016. ISSN 2405-
8963. https://doi.org/10.1016/j.ifacol.2016.07.734. URL http://
www.sciencedirect.com/science/article/pii/S2405896316310102. 30

[111] Fasheng Qiu and Xiaolin Hu. Modeling group structures in pedestrian
crowd simulation. Simulation Modelling Practice and Theory, 18(2):190–
205, February 2010. ISSN 1569190X. https://doi.org/10.1016/j.simpat.
2009.10.005. URL https://linkinghub.elsevier.com/retrieve/pii/
S1569190X09001555. 26

https://doi.org/10.1007/978-3-642-40409-2_1
http://link.springer.com/10.1007/978-3-642-40409-2_1
https://doi.org/10.1007/978-3-540-85483-8_11
http://link.springer.com/10.1007/978-3-540-85483-8_11
https://doi.org/10.1145/3411763.3443439
https://doi.org/10.1109/MCG.2006.133
https://doi.org/10.1109/MCG.2006.133
https://doi.org/10.1016/j.cag.2016.05.023
http://www.sciencedirect.com/science/article/pii/S0097849316300668
http://www.sciencedirect.com/science/article/pii/S0097849316300668
https://doi.org/10.20870/IJVR.2011.10.1.2796
https://doi.org/10.20870/IJVR.2011.10.1.2796
https://ijvr.eu/article/view/2796
https://doi.org/10.1016/j.ifacol.2016.07.734
http://www.sciencedirect.com/science/article/pii/S2405896316310102
http://www.sciencedirect.com/science/article/pii/S2405896316310102
https://doi.org/10.1016/j.simpat.2009.10.005
https://doi.org/10.1016/j.simpat.2009.10.005
https://linkinghub.elsevier.com/retrieve/pii/S1569190X09001555
https://linkinghub.elsevier.com/retrieve/pii/S1569190X09001555

200 BIBLIOGRAPHY

[112] Ramsey M. Raafat, Nick Chater, and Chris Frith. Herding in hu-
mans. Trends in Cognitive Sciences, 13(10):420–428, October 2009. ISSN
13646613. https://doi.org/10.1016/j.tics.2009.08.002. URL https:
//linkinghub.elsevier.com/retrieve/pii/S1364661309001703. 12, 14

[113] Vahid Rahmani and Nuria Pelechano. Improvements to hierarchical pathfind-
ing for navigation meshes. In Proceedings of the Tenth International Con-
ference on Motion in Games, MIG ’17, pages 1–6, Barcelona, Spain, Novem-
ber 2017. Association for Computing Machinery. ISBN 978-1-4503-5541-4.
https://doi.org/10.1145/3136457.3136465. URL https://doi.org/10.
1145/3136457.3136465. 28, 29

[114] Vahid Rahmani and Nuria Pelechano. Multi-agent parallel hierarchical path
finding in navigation meshes (MA-HNA*). Computers & Graphics, 86:1–14,
February 2020. ISSN 0097-8493. https://doi.org/10.1016/j.cag.2019.
10.006. 28, 29

[115] Craig W Reynolds. OpenSteer. URL https://opensteer.sourceforge.
net/doc.html. 39, 44

[116] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In Proceedings of the 14th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’87, pages 25–34, New York, NY,
USA, August 1987. Association for Computing Machinery. ISBN 978-0-89791-
227-3. https://doi.org/10.1145/37401.37406. URL https://doi.org/
10.1145/37401.37406. 30, 31

[117] Craig W Reynolds. Not bumping into things. Computer Graphics, Notes on
‘obstacle avoidance’for course on physically-based modeling at SIGGRAPH
(88):G1, 1988. 30, 31

[118] Craig W. Reynolds. Steering Behaviors For Autonomous Characters. Game
developers conference, 1999:14, 1999. 30, 31

[119] Otger Rogla, Nuria Pelechano, and Gustavo A. Patow. Procedural Crowd
Generation for Semantically Augmented Virtual Cities. Computers & Graphics,
99:83–99, 2018. 16, 17

[120] Francisco Arturo Rojas and Hyun Seung Yang. Minimizing Collision among
Social Groups in Wide-Open Spaces. In 2014 International Conference on
Cyberworlds, pages 77–84, October 2014. https://doi.org/10.1109/CW.
2014.19. 21, 24

[121] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The Earth Mover’s
Distance as a Metric for Image Retrieval. 67

[122] Albert E. Scheflen. Micro-territories in human interaction. In Adam Kendon,
editor, Organization of Behavior in Face-to-Face Interaction, World Anthro-
pology, pages 159–174. Mouton Publishers, 1975. ISBN 978-3-11-090764-3.
11

https://doi.org/10.1016/j.tics.2009.08.002
https://linkinghub.elsevier.com/retrieve/pii/S1364661309001703
https://linkinghub.elsevier.com/retrieve/pii/S1364661309001703
https://doi.org/10.1145/3136457.3136465
https://doi.org/10.1145/3136457.3136465
https://doi.org/10.1145/3136457.3136465
https://doi.org/10.1016/j.cag.2019.10.006
https://doi.org/10.1016/j.cag.2019.10.006
https://opensteer.sourceforge.net/doc.html
https://opensteer.sourceforge.net/doc.html
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1109/CW.2014.19
https://doi.org/10.1109/CW.2014.19

BIBLIOGRAPHY 201

[123] Albert E. Scheflen. Human Territories: how we behave in space and time.
Prentice-Hall, New York, NY, USA, 1976. ISBN 1-59593-364-6. 9, 11, 14, 54

[124] Remington Scott. Sparking life: notes on the performance capture sessions
for the Lord of the Rings: the Two Towers. ACM SIGGRAPH Computer
Graphics, 37(4):17–21, 2003. 16, 17

[125] Michael Seitz, Gerta Köster, and Alexander Pfaffinger. Pedestrian Group
Behavior in a Cellular Automaton. In Ulrich Weidmann, Uwe Kirsch, and
Michael Schreckenberg, editors, Pedestrian and Evacuation Dynamics 2012,
pages 807–814. Springer International Publishing, Cham, 2014. ISBN 978-
3-319-02446-2. https://doi.org/10.1007/978-3-319-02447-9_67. URL
http://link.springer.com/10.1007/978-3-319-02447-9_67. 26

[126] A. Seyfried, M. Boltes, J. Kähler, W. Klingsch, A. Portz, T. Rupprecht,
A. Schadschneider, B. Steffen, and A. Winkens. Enhanced empirical data for
the fundamental diagram and the flow through bottlenecks. arXiv:0810.1945
[physics], October 2008. URL http://arxiv.org/abs/0810.1945. arXiv:
0810.1945. 36, 38

[127] Armin Seyfried, Bernhard Steffen, Wolfram Klingsch, and Maik Boltes.
The Fundamental Diagram of Pedestrian Movement Revisited. Journal of
Statistical Mechanics: Theory and Experiment, 2005(10):P10002–P10002,
October 2005. ISSN 1742-5468. https://doi.org/10.1088/1742-5468/
2005/10/P10002. URL http://arxiv.org/abs/physics/0506170. arXiv:
physics/0506170. 36, 38

[128] Wei Shao and Demetri Terzopoulos. Environmental Modeling for Au-
tonomous Virtual Pedestrians. pages 2005–01–2699, June 2005. https:
//doi.org/10.4271/2005-01-2699. URL https://www.sae.org/content/
2005-01-2699/. 28

[129] Wei Shao and Demetri Terzopoulos. Autonomous pedestrians. Graphical
Models, 69(5-6):246–274, September 2007. ISSN 15240703. https://doi.
org/10.1016/j.gmod.2007.09.001. URL https://linkinghub.elsevier.
com/retrieve/pii/S1524070307000252. 26, 27, 168, 170

[130] Alexander Shoulson, Nathan Marshak, Mubbasir Kapadia, and Norman I.
Badler. ADAPT: The Agent Developmentand Prototyping Testbed. IEEE
Transactions on Visualization and Computer Graphics, 20(7):1035–1047, July
2014. ISSN 1941-0506. https://doi.org/10.1109/TVCG.2013.251. Confer-
ence Name: IEEE Transactions on Visualization and Computer Graphics. 39,
44, 150

[131] Shawn Singh, Mubbasir Kapadia, Petros Faloutsos, and Glenn Reinman. An
Open Framework for Developing, Evaluating, and Sharing Steering Algorithms.
In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friede-
mann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Ran-
gan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar,

https://doi.org/10.1007/978-3-319-02447-9_67
http://link.springer.com/10.1007/978-3-319-02447-9_67
http://arxiv.org/abs/0810.1945
https://doi.org/10.1088/1742-5468/2005/10/P10002
https://doi.org/10.1088/1742-5468/2005/10/P10002
http://arxiv.org/abs/physics/0506170
https://doi.org/10.4271/2005-01-2699
https://doi.org/10.4271/2005-01-2699
https://www.sae.org/content/2005-01-2699/
https://www.sae.org/content/2005-01-2699/
https://doi.org/10.1016/j.gmod.2007.09.001
https://doi.org/10.1016/j.gmod.2007.09.001
https://linkinghub.elsevier.com/retrieve/pii/S1524070307000252
https://linkinghub.elsevier.com/retrieve/pii/S1524070307000252
https://doi.org/10.1109/TVCG.2013.251

202 BIBLIOGRAPHY

Moshe Y. Vardi, Gerhard Weikum, Arjan Egges, Roland Geraerts, and Mark
Overmars, editors, Motion in Games, volume 5884, pages 158–169. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-10346-9 978-
3-642-10347-6. https://doi.org/10.1007/978-3-642-10347-6_15. URL
http://link.springer.com/10.1007/978-3-642-10347-6_15. Series Ti-
tle: Lecture Notes in Computer Science. 39, 41, 44

[132] Qiyun Sun, Wanggen Wan, and Xiaoqing Yu. The simulation of building
escape system based on Unity3D. In 2016 International Conference on
Audio, Language and Image Processing (ICALIP), pages 156–160, July 2016.
https://doi.org/10.1109/ICALIP.2016.7846656. 19, 20

[133] Mankyu Sung, Michael Gleicher, and Stephen Chenney. Scalable behaviors
for crowd simulation. Computer Graphics Forum, 23(3):519–528, September
2004. ISSN 0167-7055, 1467-8659. https://doi.org/10.1111/j.1467-8659.
2004.00783.x. URL http://doi.wiley.com/10.1111/j.1467-8659.2004.
00783.x. 45, 47

[134] Noor Aqilah A. Tajedi, Nur Sabahiah A. Sukor, Mohd Ashraf M. Ismail,
and Shahrul A. Shamsudin. Verifying the buildingEXODUS through an
emergency response procedure (ERP) exercise at an underground interven-
tion shaft. AIP Conference Proceedings, 1892(1):060002, October 2017.
ISSN 0094-243X. https://doi.org/10.1063/1.5005713. URL https:
//aip.scitation.org/doi/abs/10.1063/1.5005713. Publisher: American
Institute of Physics. 17

[135] Franco Tecchia, Celine Loscos, and Yiorgos Chrysanthou. Visualizing Crowds
in Real-Time. Computer Graphics Forum, 21(4):753–765, 2002. ISSN
1467-8659. https://doi.org/10.1111/1467-8659.00633. URL https://
onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00633. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00633. 19

[136] Daniel Thalmann. Crowd simulation. Wiley Encyclopedia of Computer Science
and Engineering, 2007. 15

[137] Daniel Thalmann and Soraia Raupp Musse. Crowd simulation. Springer,
London ; New York, 2nd ed edition, 2013. ISBN 978-1-4471-4449-6. OCLC:
ocn805017772. 75

[138] Daniel Thalmann, Helena Grillon, Jonathan Maim, and Barbara Yersin.
Challenges in Crowd Simulation. In 2009 International Conference on Cy-
berWorlds, pages 1–12, Bradford, West Yorkshire, United Kingdom, 2009.
IEEE. ISBN 978-1-4244-4864-7. https://doi.org/10.1109/CW.2009.23.
URL http://ieeexplore.ieee.org/document/5279720/. 18, 19, 20

[139] Wouter G. van Toll, Atlas F. Cook, and Roland Geraerts. A navigation mesh
for dynamic environments. Computer Animation and Virtual Worlds, 23(6):
535–546, 2012. ISSN 1546-427X. https://doi.org/10.1002/cav.1468. 28,
30

https://doi.org/10.1007/978-3-642-10347-6_15
http://link.springer.com/10.1007/978-3-642-10347-6_15
https://doi.org/10.1109/ICALIP.2016.7846656
https://doi.org/10.1111/j.1467-8659.2004.00783.x
https://doi.org/10.1111/j.1467-8659.2004.00783.x
http://doi.wiley.com/10.1111/j.1467-8659.2004.00783.x
http://doi.wiley.com/10.1111/j.1467-8659.2004.00783.x
https://doi.org/10.1063/1.5005713
https://aip.scitation.org/doi/abs/10.1063/1.5005713
https://aip.scitation.org/doi/abs/10.1063/1.5005713
https://doi.org/10.1111/1467-8659.00633
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00633
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00633
https://doi.org/10.1109/CW.2009.23
http://ieeexplore.ieee.org/document/5279720/
https://doi.org/10.1002/cav.1468

BIBLIOGRAPHY 203

[140] Timmu Tõke. Wolf3D – Personal 3D Avatar Creator For Games, Mobile Apps,
VR/AR, 2014. URL https://wolf3d.io/. 21, 24

[141] Branislav Ulicny, Pablo de Heras Ciechomski, and Daniel Thalmann. Crowd-
brush: Interactive Authoring of Real-time Crowd Scenes. 2004. 45, 46

[142] Jur van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal Velocity
Obstacles for real-time multi-agent navigation. In 2008 IEEE International
Conference on Robotics and Automation, pages 1928–1935, May 2008. https:
//doi.org/10.1109/ROBOT.2008.4543489. ISSN: 1050-4729. 30, 31, 64

[143] Hannes Vilhjálmsson, Nathan Cantelmo, Justine Cassell, Nicolas E. Chafai,
Michael Kipp, Stefan Kopp, Maurizio Mancini, Stacy Marsella, Andrew N.
Marshall, Catherine Pelachaud, Zsofi Ruttkay, Kristinn R. Thórisson, Herwin
van Welbergen, and Rick J. van der Werf. The Behavior Markup Language:
Recent Developments and Challenges. In Catherine Pelachaud, Jean-Claude
Martin, Elisabeth André, Gérard Chollet, Kostas Karpouzis, and Danielle
Pelé, editors, Intelligent Virtual Agents, volume 4722, pages 99–111. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-74996-7 978-
3-540-74997-4. https://doi.org/10.1007/978-3-540-74997-4_10. URL
http://link.springer.com/10.1007/978-3-540-74997-4_10. Series Ti-
tle: Lecture Notes in Computer Science. 179

[144] Hannes Högni Vilhjálmsson. Interaction in Social Space. In Birgit Lugrin,
Catherine Pelachaud, and David Traum, editors, The Handbook on Socially
Interactive Agents, pages 3–44. ACM, New York, NY, USA, 1 edition, Oc-
tober 2022. ISBN 978-1-4503-9896-1. https://doi.org/10.1145/3563659.
3563662. URL https://dl.acm.org/doi/10.1145/3563659.3563662. 8, 9,
11, 14

[145] Armel Ulrich Kemloh Wagoum, Mohcine Chraibi, Jun Zhang, and Gregor
Lammel. JuPedSim: an open framework for simulating and analyzing the
dynamics of pedestrians. 39, 41, 44

[146] He Wang, Jan Ondřej, and Carol O’Sullivan. Trending Paths: A New
Semantic-Level Metric for Comparing Simulated and Real Crowd Data. IEEE
Transactions on Visualization and Computer Graphics, 23(5):1454–1464, May
2017. ISSN 2160-9306. https://doi.org/10.1109/TVCG.2016.2642963. 36,
38, 67, 156

[147] Zhou Wang and Alan C. Bovik. Mean squared error: Love it or leave it? A
new look at Signal Fidelity Measures. IEEE Signal Processing Magazine, 26
(1):98–117, January 2009. ISSN 1558-0792. https://doi.org/10.1109/MSP.
2008.930649. Conference Name: IEEE Signal Processing Magazine. 67

[148] Nicholas Mario Wardhana, Henry Johan, and Hock Soon Seah. Enhanced
waypoint graph for surface and volumetric path planning in virtual worlds.
The Visual Computer, 29(10):1051–1062, October 2013. ISSN 0178-2789,
1432-2315. https://doi.org/10.1007/s00371-013-0837-x. URL http:
//link.springer.com/10.1007/s00371-013-0837-x. 28

https://wolf3d.io/
https://doi.org/10.1109/ROBOT.2008.4543489
https://doi.org/10.1109/ROBOT.2008.4543489
https://doi.org/10.1007/978-3-540-74997-4_10
http://link.springer.com/10.1007/978-3-540-74997-4_10
https://doi.org/10.1145/3563659.3563662
https://doi.org/10.1145/3563659.3563662
https://dl.acm.org/doi/10.1145/3563659.3563662
https://doi.org/10.1109/TVCG.2016.2642963
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1007/s00371-013-0837-x
http://link.springer.com/10.1007/s00371-013-0837-x
http://link.springer.com/10.1007/s00371-013-0837-x

204 BIBLIOGRAPHY

[149] D. Wolinski, S. J. Guy, A.-H. Olivier, M. Lin, D. Manocha, and J. Pettré.
Parameter estimation and comparative evaluation of crowd simulations. Com-
puter Graphics Forum, 33(2):303–312, 2014. ISSN 1467-8659. https://doi.
org/10.1111/cgf.12328. URL https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.12328. 34, 35, 67, 176

[150] Yao Xiao, Ziyou Gao, Rui Jiang, Xingang Li, Yunchao Qu, and Qingxia
Huang. Investigation of pedestrian dynamics in circle antipode experiments:
Analysis and model evaluation with macroscopic indexes. Transportation
Research Part C: Emerging Technologies, 103:174–193, June 2019. ISSN
0968090X. https://doi.org/10.1016/j.trc.2019.04.007. URL https:
//linkinghub.elsevier.com/retrieve/pii/S0968090X18312610. 36, 38

[151] Jiang Xueling. Simulation Model of Pedestrian Evacuation in High-Rise
Building: Considering Group Behaviors and Real-Time Fire. Interna-
tional Journal of Smart Home, 9(2):81–92, February 2015. ISSN 19754094,
19754094. https://doi.org/10.14257/ijsh.2015.9.2.07. URL http:
//gvpress.com/journals/IJSH/vol9_no2/7.pdf. 26

[152] Xinjie Yao, Ji Zhang, and Jean Oh. Following Social Groups: Socially
Compliant Autonomous Navigation in Dense Crowds, November 2019. URL
http://arxiv.org/abs/1911.12063. arXiv:1911.12063 [cs]. 30, 32

[153] Peter Yap. Grid-Based Path-Finding. In Robin Cohen and Bruce Spencer,
editors, Advances in Artificial Intelligence, Lecture Notes in Computer Science,
pages 44–55, Berlin, Heidelberg, 2002. Springer. ISBN 978-3-540-47922-2.
https://doi.org/10.1007/3-540-47922-8_4. 28

[154] Barbara Yersin, Jonathan Maım, Pablo de Heras Ciechomski, Sebastien
Schertenleib, and Daniel Thalmann. Steering a Virtual Crowd Based on a
Semantically Augmented Navigation Graph. 2005. 45, 46

[155] Jianfeng Zhang, Zihang Jiang, Dingdong Yang, Hongyi Xu, Yichun Shi,
Guoxian Song, Zhongcong Xu, Xinchao Wang, and Jiashi Feng. AvatarGen: A
3D Generative Model for Animatable Human Avatars, November 2022. URL
http://arxiv.org/abs/2211.14589. arXiv:2211.14589 [cs]. 21, 24

[156] Jun Zhang, Wolfram Klingsch, Andreas Schadschneider, and Armin Seyfried.
Transitions in pedestrian fundamental diagrams of straight corridors and
T-junctions. Journal of Statistical Mechanics: Theory and Experiment,
2011(06):P06004, June 2011. ISSN 1742-5468. https://doi.org/10.1088/
1742-5468/2011/06/P06004. URL http://arxiv.org/abs/1102.4766.
arXiv: 1102.4766. 36, 38

[157] D. L. Zhao, Q. Zhang, P. C. Liu, M. J. Sun, X. Q. Wang, X. L. Zhang, and
X. Wang. Simulation on Occupant Evacuation at a Public Site Based on
SMARTFIRE and Building EXODUS. Studies in Engineering and Technology,
5(1):15–24, August 2017. ISSN 2330-2046. https://doi.org/10.11114/set.
v5i1.2627. URL http://redfame.com/journal/index.php/set/article/
view/2627. Number: 1. 17

https://doi.org/10.1111/cgf.12328
https://doi.org/10.1111/cgf.12328
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12328
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12328
https://doi.org/10.1016/j.trc.2019.04.007
https://linkinghub.elsevier.com/retrieve/pii/S0968090X18312610
https://linkinghub.elsevier.com/retrieve/pii/S0968090X18312610
https://doi.org/10.14257/ijsh.2015.9.2.07
http://gvpress.com/journals/IJSH/vol9_no2/7.pdf
http://gvpress.com/journals/IJSH/vol9_no2/7.pdf
http://arxiv.org/abs/1911.12063
https://doi.org/10.1007/3-540-47922-8_4
http://arxiv.org/abs/2211.14589
https://doi.org/10.1088/1742-5468/2011/06/P06004
https://doi.org/10.1088/1742-5468/2011/06/P06004
http://arxiv.org/abs/1102.4766
https://doi.org/10.11114/set.v5i1.2627
https://doi.org/10.11114/set.v5i1.2627
http://redfame.com/journal/index.php/set/article/view/2627
http://redfame.com/journal/index.php/set/article/view/2627

	Abstract
	List of Tables
	List of Figures
	Introduction
	A Crowd Simulation Utopia
	The Status Quo
	Problem Statement

	A Hopeful Protopia
	Proposed Solution

	Contributions and Thesis Structure
	Contributions
	Thesis Structure

	Background
	Human Behavior
	Social Space

	Computer Simulation
	Crowd Simulation Applications
	Variety in Crowds
	Computational Behavior Models
	Navigation Algorithms
	Calibrating Model Parameters
	Evaluating Simulation Output

	Attempts to Unify
	Crowd Simulation Frameworks

	Attempts to Simplify
	Discussion

	Theoretical Framework
	What Influences Human Navigation
	Modeling Behaviors with Heatmaps
	Advantages of Modeling with Heatmaps
	Spreading Data Across Several Heatmaps
	Absolute and Relative Heatmaps
	Heatmaps with Varying Resolutions
	Blending Heatmaps for Combining Models
	Combining Heatmaps with Different Sizes
	Dynamic Heatmaps
	Heatmaps Performance

	Heatmap Behavior Modeling
	High Level Behavior Modeling
	Global Path Planning Adjustments
	Local Steering

	Operators Formalization
	Heatmap Calibration and Evaluation
	Discussion

	Agora Architecture
	Requirements and Objectives
	Usability
	Modularity
	Scalability
	Versatility

	Components Overview
	User Interface
	Data Handler
	Crowd Generator
	Crowd Simulator
	Visualizer
	Evaluator
	Plugin System
	Summary and Discussion

	Agora Software Architecture
	Unity-based User Interface
	Data Manager
	Unity Multipurpose Avatar Engine
	Menge Simulator
	Unity-based Visualizer
	OpenCV Evaluator
	Plugin Manager
	Summary and Discussion

	Agora Implementation
	Menge-Unity Integration
	Menge so Far
	Native Plugins in Unity
	Menge C-API Extension

	Unity Multipurpose Avatar
	Creating a Fitting Population
	Animating the Agents
	Instantiating the Agents

	Scene Authoring
	Behavior Authoring
	xNode Behavior Authoring Tool
	xNode Heatmap Nodes

	Menge Heatmap Plugin
	Heatmap Implementation
	Heatmap Goal Selector
	Heatmap Velocity Modifier
	Heatmap Transition

	OpenCV Evaluator
	Positional Data to Heatmap
	Heatmaps Comparison
	Evaluator GUI

	Case Studies
	First Case Study: Þingvellir
	Unity Native Simulation
	Field Study
	Agora Simulation
	Output Evaluation
	Summary of Results and Discussion

	Second Case Study: Urban Environment
	Urban Environment
	Behavior Theories
	Native Implementation
	Agora Implementation
	Summary of Results and Discussion

	Discussion
	Main Results Summary
	Answers to Research Questions
	Advantages and Limitations
	Advantages
	Limitations

	Agora Supporting Literature

	Future Work
	Roadmap for Principles Assessment
	Adding Social Behaviors
	Perceptual Studies
	Extensions to the Theoretical Framework
	Extensions to the Implementation
	Improving Menge Integration

	Conclusion
	Supported Claims
	Contributions
	Limitations and Challenges
	A Step Towards the Protopia

	Bibliography

