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Abstract 18 

Every year, numerous studies are published that compare the effects of different factors on the 19 

growth of aquaculture fish. However, comparatively little attention has been given to the 20 

experimental designs of these studies - in how many rearing units should each treatment be 21 

replicated, how many fish should be in each tank (n) and how should the data be analysed. 22 

The reliability of the results increases with increased replication and n. In reality, however, 23 

the experimental design must strike a balance between limited resources and the reliability of 24 

the statistical analysis. A survey of recent publications in Aquaculture suggests, that most 25 

(83%) aquaculture growth studies apply each treatment in triplicates with an average of 26 26 

fish in each tank (range: 4 to 100). The minimum difference that can reliably be detected with 27 

statistical analyses is determined by the number of replications of each treatment, n, the 28 

variance of the data and the number of treatments applied. In the present study, we 29 

accumulated information on the variance of data in aquaculture growth studies on different 30 

species to estimate the minimum detectable difference and to assist researchers in designing 31 

experiments effectively. These results suggest that the variance is similar for different 32 

aquaculture species and, therefore, the same designs (level of replication and n) are suitable 33 

for studies on different species of fish. 34 

The minimum difference (MDD) in mean body-mass of different treatment groups that can be 35 

detected in a typical aquaculture study (triplicates, 25 fish in each tank and average variance) 36 

with 80% statistical power (less than 20% chance of Type II error) is around 26% of the grand 37 

mean. Increasing the n from 25 to 100 will reduce the MDD to 19% of the grand mean, while 38 

a further increase in n will have comparatively lesser effect. Increasing replication to 39 

quadruplicates or sextuplicates (with n as 100), will further reduce the MDD to 16% and 12% 40 

of the grand mean respectively. MDD under 10% of the grand mean is only possible when 41 

fish for the experiment are selected within a narrow size range to reduce variance.  42 
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Simulations were performed, where samples (experiments) were repeatedly drawn from 43 

artificial populations with identical distribution and with the same experimental design as is 44 

commonly used in growth studies. Two of the populations had dose-dependent responses to 45 

treatment while one population showed no response to treatment. The resulting data was 46 

analysed with a mixed model ANOVA and by fitting either polynomials or asymptotic 47 

models to the data. Contrary to earlier suggestions, the critical treatment (minimum treatment 48 

to generate maximum response) estimated with the ANOVA approached more closely the 49 

population responses than did the critical treatments estimated with the non-linear models. 50 

 51 

Keywords: Growth studies, statistical power, minimum detectable difference, number of 52 

replicates, sample size, ANOVA, polynomial, non-linear models 53 

 54 

55 



4 

 

1. Introduction 56 

Information on the effect of feed ingredients, physical environment and other factors on the 57 

growth of fish are important for the development of aquaculture. Therefore, growth studies 58 

are common in aquaculture research where the mean sizes of different groups are compared 59 

following various treatments; the objective being to predict the performance of populations 60 

(all fish of the same species/strain) under different conditions.  61 

The design of aquaculture growth experiments usually includes replication of treatments in 62 

two or more rearing units (e.g. tanks, ponds or net pens) where the replicates are considered 63 

independent samples from the populations. How accurately the results of experiments reflect 64 

the mean responses of the populations depends primarily on the number of fish sampled 65 

(within each replicated unit), the number of replicates and the variance of responses, both 66 

among individual fish within a replicated unit and among replicates. 67 

A number of approaches have been used to analyse the results of growth studies, but the 68 

method most commonly used is analysis of variance (ANOVA). A cursory examination of 69 

growth studies (Table 3) published during the last year in the journal Aquaculture (29 in total) 70 

suggests that ANOVA is used in in some capacity in all studies although 24% of the studies 71 

complement the analysis of dose response data with linear or non-linear methods.  72 

In growth studies where treatments are replicated, individual fish should not be considered the 73 

experimental units. The fish within a tank are all exposed to the same “tank effects” 74 

(differences between tanks independent of treatment effects) and complicated interactions 75 

among the fish may contribute to variability within the tank that are not caused by the 76 

treatment (Gardeur et al. 2001; Imsland 2001; Koslow & Hurlbert 2006). In fact, it can be 77 

argued that because of the common “tank effect”, individual fish within a tank are not 78 

independent samples from the population but are instead “pseudoreplicates” as defined by 79 

Hurlbert (1984). A better approach is to perform ANOVA based on the total biomass or mean 80 
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body-mass in each tank (Cowey 1992; Smart et al., 1998) or, better still, to use a mixed model 81 

ANOVA where treatments are fixed factors and tanks are nested as random factors within 82 

treatments. With the latter method, the information on individual fish is modelled to fully 83 

account for the data structure (Ruohonen 1998, Ling and Cotter 2003). If the design of the 84 

experiment is balanced, i.e. the number of fish in all tanks and the number of tanks in all 85 

treatments is the same, the results of the simple and mixed model ANOVA will be the same. 86 

However, in long term growth studies the design may not be balanced, since mortality can 87 

vary among rearing units and all fish from single rearing units may be lost due to mishaps. 88 

When the design is not balanced, a mixed model should be used since the risk of type I error 89 

(rejecting a correct hypothesis) is increased when a simple ANOVA is used for the analysis of 90 

unbalanced data (Ruohonen 1998).  91 

In recent years, methods for mixed model analysis have developed rapidly and now many 92 

software packages such as SAS (SAS Institute Inc., Cary, NC, USA) and R (R Core Team 93 

2014) offer the possibility of linear mixed models with the Kenward-Roger modification of F-94 

tests (Kenward and Roger, 1997, 2009). The Kenward-Roger modification adjusts the F 95 

values and degrees of freedom depending on the size of the “tank effect” and thus increases 96 

statistical power when the “tank effect” is small. The method has been used in aquaculture 97 

growth studies (Tobin et al. 2006; Schram et al. 2012). Over 83% of the growth studies 98 

published last year in Aquaculture use the mean body-mass or total biomass in each tank as 99 

the unit of analysis while only 11% used a mixed model analysis (Table 3). 100 

In ANOVA, the null hypothesis of no effect of experimental treatments is tested and the 101 

means of the treatment groups are considered significantly different when the test statistics (p-102 

value) indicates that the probability of the null hypothesis being true is less than 5% (α level 103 

less than 0.05). In other words, the probability of rejecting a correct null hypothesis (type I 104 



6 

 

error) is less than 5%. However, it is also possible that an incorrect hypothesis is not rejected 105 

and differences among means are not detected where they truly exist. Failing to reject an 106 

incorrect hypothesis is called Type II error. The probability of Type II error is β and the 107 

power of a statistical test is defined as 1-β. There is no conventional criterion for statistical 108 

power as there is for α, although a minimum of 80% is commonly regarded as suitable 109 

(Araujo & Frøyland 2007). Statistical power is rarely reported in aquaculture growth studies 110 

(Searcy-Bernal 1994) indicating that researchers are less concerned with Type II error than 111 

they are with α and Type I error. 112 

The statistical power of mixed models depends on five factors: (1) The difference among 113 

means caused by the treatment (effect size), (2) the variance of the data, both among fish 114 

within a tank and among tanks receiving identical treatments, (3) the number of replicate 115 

tanks, (4) the number of fish within each tank and (5) the number of treatments tested (Ling 116 

and Cotter 2003, Sokal and Rolf 2012). Statistical power increases with increased effect size, 117 

the number of replicate tanks and the number of fish within each replicate tank while 118 

statistical power is reduced with increased variance and number of treatments tested (Ling and 119 

Cotter 2003). Hence, to secure acceptable statistical power, replications and sample size per 120 

replicate should be maximized. However, the number of tanks available and the cost of 121 

resources for aquaculture growth studies are usually limited. Therefore, experimental design 122 

must strike a balance between acceptable power and the available resources.  123 

The issue of the minimum detectable difference (MDD) in aquaculture studies, i.e. the 124 

minimum difference that is likely to be detected with 80% statistical power, has received little 125 

attention. Ling and Cotter (2003) shed important light on this subject when they compiled 126 

information on the coefficient of variation within tanks (CVε) and the coefficient of variation 127 

among tanks within treatment (CVβ) for triploid Atlantic salmon. In the present study, we 128 

compiled information on variance in body-mass in growth studies on different fish species to 129 



7 

 

 

 

be able to estimate statistical power and the MDD. This information was then used to 130 

calculate the expected statistical power and effect size for experimental designs with different 131 

levels of replication and number of fish in each replicate tank. 132 

Dose-response designs, where treatments are applied at incrementing levels of e.g. nutrient 133 

content or water quality, are common in aquaculture growth studies. These data can be 134 

analysed either with ANOVA or by using different linear and non-linear methods. The latter 135 

include: Broken line analyses, where two straight lines are fitted to the data, polynomial 136 

regression or non-linear regression models that fit asymptotic curves to the data (Baker 1986, 137 

Cowey 1992, Shearer 2000). When the results are analysed with ANOVA, the critical 138 

response is usually determined as the lowest treatment level that gives a response that is not 139 

significantly different from the maximum response. However, this approach has been 140 

criticised by Baker (1986) and then later by Cowey (1992) and Shearer (2000). After 141 

reviewing a number of published growth studies with dose-dependent relationship, Shearer 142 

(2000) concluded that ANOVA may underestimate the critical treatment level by as much as 143 

50% due to the inability of the method to detect small differences. Instead several authors 144 

(Baker 1986, Cowey 1992, Shearer 2000) recommend the use of linear or non-linear methods 145 

and suggested that they provided more accurate results. However, fitting lines of different 146 

shape assumes that there is a certain underlying structure to the data. Moreover, due to the 147 

inherent variability in aquaculture growth data it may be difficult to determine visually if the 148 

response is polynomial or asymptotic. Therefore, it is questionable if this approach is more 149 

appropriate than ANOVA. A second objective of this study was to use simulation studies to 150 

compare the fidelity of different methods of statistical analysis to the true underlying 151 

responses of populations and the conclusions drawn based on their results. 152 

153 
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2. Methods 154 

2.1. Data acquisition 155 

Original raw data from 24 independent growth studies on Arctic charr (Salvelinus alpinus), 156 

Atlantic halibut (Hippoglossus hippoglossus), Atlantic cod (Gadus morhua), turbot 157 

(Scophthalmus maximus) and tilapia (Oreochromis shiranus) were analysed in this study. 158 

Data on Arctic charr (Ólafur Sigurgeirsson and Jón Árnason, unpublished.), Atlantic halibut 159 

(Thorarensen et al., 2010), Atlantic cod (Edelsparre, Pálsson and Steingrímsson, unpublished; 160 

Thorarensen, unpublished), and turbot (Imsland et al. 2013) were from growth studies 161 

conducted at Verið research station, Sauðárkrókur, Iceland.  The studies examined different 162 

treatment effects (dietary ingredients, oxygen saturation, light regimes and temperature) on 163 

the growth performance of fish. Rearing conditions and fish size varied between experiments 164 

(Table 1). The data for tilapia were from a study conducted at Bunda College, University of 165 

Malawi on the effect of temperature on Oreochromis shiranus (Ssebisubi, 2008). 166 

2.2. Data analysis  167 

Data were analyzed using mixed model ANOVA in SPSS to obtain the mean sums of square 168 

for tanks nested within treatments (MSwithin) and the error mean square (MSerror), which 169 

constituted the error variance ( 2ˆ
 ). The coefficient of variation of the error term (CVε) was 170 

calculated as 
X

CV 


̂
 where X̄  is the grand mean. The variance among tanks within 171 

treatments ( 2ˆ
 ) was calculated as

n

MSwithin

2
2 ˆ)(

ˆ 






 , where n is the number of fish in each 172 

tank. The coefficient of variation for tanks within treatments (CVβ) was calculated 173 

as
X

CV




̂
 . The statistical power was estimated as described by Ling and Cotter (2003). 174 

Briefly, the mean variance of treatment groups ( 2

Y
s ) was estimated as:

nb

MS
s within

Y
2 , where b 175 
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is the number of replicate tanks within treatments. The 2

Y
s  was used to compute Tang’s 176 

parameter ( ) (Tang, 1938) as
2

2

2
Y

as

d
 ; where d is the difference between means and a is 177 

the number of treatments tested. This value was then used to compute the non-centrality 178 

parameter ( ) as: 2 a . 179 

The statistical power of each study was then calculated with the program G*Power (Faul et 180 

al., 2007) using the λ and degrees of freedom with the α-level set at 0.05. This protocol was 181 

repeated to model the MDD for different values of CVε and CVβ (Table 2) using levels of 182 

replications (b) from 2 to 6 and number of fish in each tank (n) from 10 to 1000. 183 

2.3. Simulation studies 184 

Simulations were performed to compare three different methods for statistical analysis of 185 

growth studies with a graded response: ANOVA, a second order polynomial and a three 186 

parameter logistic growth model. The simulations were performed with R (R Core Team 187 

2014). The datasets used for the analysis represent random samples from three different 188 

populations:  189 

Res45%: A population with a saturation type relationship to treatment where the 190 

response increased with treatment level until it plateaued with a response of 100% at 191 

treatment levels over 100%. The response to the minimum treatment was 45% lower 192 

than the maximum response (100%) (Fig. 1).  193 

Res 11%: A population with saturation type relationship to treatment where the 194 

minimum response was 11% lower than the maximum response. The maximum 195 

response was 100% and reached when the treatment level was 100% (Fig. 1). 196 

Res0%: A population with no response to treatment (Fig. 1). 197 
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The population responses to the treatments were normally distributed at each treatment level 198 

and the same variance was assumed for all responses regardless of treatment level.  199 

The simulations were performed on 1000 datasets generated from each population. The 200 

simulations were made for experiments with 18 tanks and 50 fish in each tank. The datasets 201 

were random samples, generated based on the mean responses of the population at different 202 

treatment levels with equal variance for the means of tanks within all treatment levels. The 203 

means of tanks within treatments were normally distributed with a standard deviation equal to 204 

4.5% of the grand mean for tanks within treatments. The residual variance within each tank 205 

was normally distributed with a standard deviation equal to 30.6% of the grand mean. These 206 

standard deviations are the same as the mean CVβ and CVε for all species found in this study 207 

(Table 1). In the data sets generated, the treatment levels tested were in arbitrary units 208 

expressed in percentages and could range between 85% and 121%. To reflect the strengths of 209 

different statistical approaches, tanks were allocated differently for mixed model ANOVA, 210 

polynomial models and non-linear models. In the mixed model simulations, six levels of 211 

treatments were tested, each in triplicate. In each sample, the lowest treatment levels tested 212 

ranged at random between 85% and 90% and then successive treatment levels were applied in 213 

5% increments. The samples for the polynomial and non-linear models were in duplicate at 214 

nine treatment levels. In each sample, the lowest treatment level tested ranged at random 215 

between 85% and 89% and then successive treatment levels were applied in 4% increments 216 

covering a range of treatment levels of 32%.  217 

Three methods were used to analyse the data: 218 

1) Mixed model ANOVA with tanks as random factors nested within treatments and 219 

measurements of individual fish in each tank using the lme function within the nlme 220 

package (Pinheiro et al. 2014) in R. All designs were balanced with the treatment 221 
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degrees of freedom as 5 (treatment levels - 1) and the residual degrees of freedom as 222 

12 (treatment levels × (tanks within treatments - 1)). 223 

2) Second order polynomial using the lm function in R.  224 

3) Non-linear three parameter logistic growth model using a self-starting logistic function 225 

in R (SSlogis) 226 

Three approaches were used to compare the analysis methods:  227 

1. The critical treatment levels, the minimum treatment level required to generate a 228 

maximum response were estimated for all the models:  229 

a. For the ANOVA, the highest treatment level that did not generate a response 230 

significantly different from those of the two highest treatment levels.  231 

b. For the polynomial model, the critical level was the estimated treatment level 232 

that caused the maximum response.  233 

c. In the logistic growth model, the treatment level causing a response that was 234 

98% of the asymptote was arbitrarily chosen as the critical treatment.  235 

2. The residual variance of the predicted values for each model from the population 236 

values:  


t

i
iit

YY
1

2

)ˆ(
1

where t are the treatment levels tested, Ŷ is the predicted 237 

response and Y is the population response. 238 

3. The maximum responses, estimated from the predicted values of the ANOVA and the 239 

second order polynomial and for the asymptote of the logistic regression model. 240 

241 
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3. Results 242 

3.1. Coefficient of variation for fish within tanks (CVε) 243 

In most studies, CVε increased as the experiments progressed but tended to stabilize when the 244 

factorial increase in body mass (mean body-mass / mean initial body-mass) was about 1.5 245 

(Fig. 2a,b,c). However, this pattern was not entirely consistent: In the study on Atlantic 246 

halibut, the CVε was nearly constant throughout and in the study on tilapia the CVε increased 247 

progressively (Fig. 1a). At the end of the experiments, the mean CVε was 30.6 ± 4.5% (mean 248 

± SD) and ranged from 15% to 56% (Table 1). There were no clear differences in final CVε 249 

for different species and the CVε varied between different studies on a single species. Thus the 250 

final CVε for Atlantic cod ranged from 32 to 56% (Fig. 2b; Table 1) and from 15 to 39% for 251 

Arctic charr (Fig. 2c; Table 1). 252 

  253 

3.2. Coefficient of variation for tanks within treatments (CVβ) 254 

The mean CVβ at the end of all studies was 4.5 ± 0.4% (Mean ± SD; range: 0 – 12). The CVβ 255 

increased initially in many studies but stabilised as the experiments progressed (Fig. 3a,c). 256 

However, this pattern was not consistent in all studies and in some, the CVβ decreased as the 257 

experiments progressed (Fig. 3a,b). Of the 24 studies investigated, eight had a final CVβ of 258 

zero; five had CVβ ranging from 2% to 5%, while 11 had CVβ of above 5%, the highest being 259 

11% (Table 1). 260 

 261 

3.3 Correlation between initial and final CV and body mass. 262 

In 20 studies (Table 1), information was available on both initial and final variance in body-263 

mass. The final CVε in these studies was significantly correlated with initial CVε (r = 0.621; 264 

p<0.003; N = 20). Similarly, final CVβ in different studies was significantly correlated with the 265 

initial CVβ (r = 0.657; p<0.002; N = 20).  266 
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Information was available from several studies on Arctic charr and Atlantic cod (Table 1.). 267 

These data were used to compare the variance in studies on the two species. The final CVε and 268 

CVβ in experiments on both species (P < 0.05) - decreased with increasing final body mass 269 

(Fig. 4a, b). Adjusting for body mass, CVε was significantly lower (P < 0.0001) in Arctic 270 

charr than in Atlantic cod (Fig4a); while CVβ were not significantly different (Fig. 4b). 271 

However, the initial CVε in the studies on Atlantic cod were higher than in the studies on 272 

Arctic charr and, when the initial CVε is included as a variable in the model, the difference 273 

between the species was no longer significant.  274 

 275 

3.4. Statistical power and minimum detectable difference with 80% statistical power. 276 

When experiments are designed it is recommended that statistical power is 80%. In the 277 

experiments analysed (Table 1), the mean statistical power estimated post hoc was 53.9±0.3% 278 

(mean±SD) and ranged from 12% to 100%. The MDD was 18.1 ± 12.8% (range: 4% to 56%) 279 

of the grand mean. 280 

To show how experimental design is likely to affect the MDD, we modelled MDD using 281 

different number of replications and numbers of fish within each tank. The MDD was 282 

modelled for medium, high or low CVε and CVβ using the average, maximum and minimum 283 

CVε and CVβ encountered (Table 1). For the purpose of the modelling, it was assumed that 284 

five different treatments were being tested. 285 

The level of replication and the number of fish in each tank affects the MDD (Fig. 5a,b,c). For 286 

all levels of replication, the MDD decreases markedly with increasing n until it reaches about 287 

100. There is comparatively little gained in reduced MDD by increasing n over 100. For 288 

average CVε and CVβ, designs in triplicate are required for reaching an MDD of 20% or less. 289 
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Similarly, four to six replications can give a MDD of 10-14% (Fig. 5a). A MDD under 10% is 290 

only possible when both CVε and CVβ are low (Fig. 6c); reaching 4 to 10% when n is 100. 291 

 292 

3.5. Comparison of different methods to analyse graded treatment growth data 293 

Datasets were generated from random samplings of three different populations (Fig. 1) based 294 

on the average CVε and CVβ (Table 1). In total, 1000 datasets were generated for each 295 

population and analysed using a mixed model ANOVA, a second order polynomial and 296 

logistic regression. The logistic regression failed to converge on average in 0.1%, 20% and 297 

67% of trials for the Res45%, Res11% and Res0% populations respectively.  298 

With the ANOVA, the estimated mean treatment level required to create a 100% response for 299 

the Res45% population was 99.7%, matching closely the critical treatment of the population 300 

(100%) with 95% of estimated values being between 96% and 104% (Table 2). The second 301 

order polynomial overestimated the critical treatment of the population with more than 95% 302 

of the estimates being higher than 107% (Table 2). The critical treatment estimated through 303 

the logistic regression (Table 2) was 101% (95% range 97%-107%). However, it should be 304 

stressed that the critical treatment was arbitrarily chosen to be where the response reached 305 

98% of the estimated maximum. Obviously the response level chosen will affect the estimate 306 

of the critical treatment value.  307 

Analysis of the Res11% population showed a significant treatment effect in 36% of tests with 308 

ANOVA and 51% with the polynomial tests. The mean critical treatment estimate from the 309 

ANOVA was 95% (Range 90%-103%) while statistical analysis with the polynomial 310 

estimated the critical treatment values as 109% (range: 102%-113%) (Table 2). The mean 311 

critical treatment estimate from the logistic regression was 103% (range: 93%-113%). 312 

For the Res0% population, where treatment had no effect (all responses were 100%), the 313 

polynomial showed significant effects in 5% of tests while the mixed model ANOVA only 314 
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showed significant differences in 1% of the analyses. As described above, the logistic 315 

regression analysis did not converge in most of the analyses of samples from of the 0% 316 

population. 317 

The estimated maximum responses were similar for all methods of analysis with the 95% 318 

range of responses covering the population maximum response of 100%. For the Res45% 319 

population, estimates from all statistical methods show a similar mean square residual 320 

deviation from the population response (Table 2), while at Res11% and Res0% the residual 321 

values for the ANOVA were slightly higher than for either the polynomial or the logistic 322 

regression. The mean MDD in the ANOVA was 18.3% and 13.1% for the Res45% and 323 

Res11% populations respectively. 324 

 325 

4. Discussion  326 

This is the first study to evaluate the variance, statistical power and MDD in growth studies of 327 

various aquaculture species. Earlier, Ling and Cotter (2003) evaluated the variance in growth 328 

studies of triploid Atlantic salmon, finding a mean CVε of 28 ± 8.6% (range: 14-41%) and 329 

CVβ of 3.2 ± 1.9% (range: 1-7%). In 29 growth studies on 24 species published during the last 330 

year in Aquaculture (Table 3), the estimated mean CVβ was 5% (range: 0-49%) while the 331 

mean CVε, was 28%. All these values are in accord with the results of the present study where 332 

the CVε and CVβ (mean ± SD) were 30.6 ± 4.5% (range: 15%-56%) and 4.5 ± 0.4% (range: 0-333 

12%) respectively. Both the present study and that of Ling and Cotter (2003), show that CVε 334 

and CVβ for a single species can range widely among different studies. The only indication of 335 

species differences in variance in body mass is the apparent difference in CVε between the 336 

Atlandic cod and Arctic charr (Fig. 4a). However, this may not reflect species specific 337 

variance, but instead higher initial CVε in the former studies. Fish were selected for these 338 
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studies to be within certain size ranges and, therefore, the CVε does not reflect the natural 339 

variation of the species, but rather the abundance of fish available. Combined, these results 340 

suggest that the variance encountered in growth studies of different species of fish is similar, 341 

suggesting, that similar experimental designs are appropriate for all these species.  342 

The model calculation conducted in this study show, as expected, that both the number of fish 343 

in each treatment and the level of replication affect the MDD. Increasing n up to 100 344 

decreases the MDD considerably, while increasing n over 100 has a limited effect (Fig. 345 

5a,b,c). Increasing the level of replication from duplicates to triplicates reduces the MDD by 346 

about 30%. Further increases in the level of replication will reduce the MDD further, although 347 

the gain in reduced MDD is progressively decreased with each increase in level of replication.  348 

The MDD is of particular interests for researchers. The average expected MDD for mixed 349 

model ANOVA (for statistical power of 80%) in the experimental data analysed from the 350 

different growth studies (Table 1) was 23% of the mean (range: 6-55%). In studies published 351 

in Aquaculture during the last year (Table 3), treatments in triplicate were the most common 352 

(83% of studies), with duplicates (10%) and quadruplicates (3%) being less common. One 353 

study used six tanks per treatment. The mean number of fish in each tank in these studies was 354 

25.7 (range: 4-100). For triplicates, n of 26 and statistical power of 80%, the expected 355 

minimum detectable difference is 26% when variance is average. These results suggest that in 356 

most growth studies published, differences smaller than about 25% of the grand mean are not 357 

reliably detected (i.e. in least 80% of trials) and half of studies will fail to detect true 358 

differences under 20%.  359 

Researcher can take active measures to increase the resolution of statistical tests by increasing 360 

the level of replication and the n. Furthermore, when CVε and CVβ are low the MDD is also 361 

reduced. Both CVε and CVβ tend to increase as the experiments progressed (Fig. 2a,b) and this 362 

was also the case in 74% of the growth studies published in Aquaculture during the last year 363 
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(Table 3). However, the initial variance and final variance are positively correlated and, 364 

therefore, our results suggest that it is possible to reduce the MDD further by selecting fish for 365 

experiments within a narrow size range. By using stochastic models Imsland (2001) 366 

suggested, that there were two main causes for size variation seen in laboratory studies with 367 

turbot: (a) Individual genetical growth rate variation, this trait is stochastic in the population 368 

and changes with time (stochastic growth with memory) (b) Combination of individual 369 

genetical growth rate and size-related dominance hierarchies. By selecting fish within a 370 

narrow size range both a) and b) above will be minimized which makes it possible to reduce 371 

MDD. However, if the treatments are size specific, i.e. treatment effect depends on size, 372 

selection of fish within a narrow size range may produce a bias in the results. 373 

When the differences among treatments in growth studies are small, the duration of the 374 

experiment is also important. As most of the growth experiments evaluated in this study 375 

progressed, both CVε and CVβ tended to level off (Fig. 2a,b,c). If CVε and CVβ are stable while 376 

the difference in mean size of treatment groups increases with time, statistical power will 377 

increase. Furthermore, both CVε and CVβ are reduced as size increases (Fig. 4a,b). Therefore, 378 

in order to avoid type II errors, the duration of experiments must be extended where 379 

differences between effects of different treatments are small for adequate time. 380 

Another possibility to increase statistical power is to include data from the entire study rather 381 

than analysing only the final size of the fish. This can be done with mixed model ANOVA by 382 

including time either as a categorical factor (Ling 2007), as a covariate or using repeated 383 

measures ANOVA (Imsland 2001). When time is included as a covariate the growth 384 

performance is compared as the slopes of the growth curves rather than the final size. 385 

However, when there are large differences in the size of the fish at different times, the 386 

variances may not be equal and then one of the assumptions of the ANOVA may be violated. 387 
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Therefore, it may be necessary to use statistical procedures such as GLM in R which allows 388 

data with gamma distribution or PROC MIXED in SAS where variance and covariance 389 

structures can be directly modelled. 390 

The results of the present study are an interesting contribution to the discussion of which is 391 

the most appropriate statistical method to analyse data from growth studies. Analysing 392 

published data on feed studies, Shearer (2000) suggested that ANOVA, in dose-response 393 

studies, might under-estimate the critical treatment effect required to produce a maximum 394 

response due to the inability of ANOVA to detect small differences. Instead he recommended 395 

using regression techniques, either polynomial or logistic. However, the results of the 396 

simulations performed in the present study directly contradict his conclusion. They suggest 397 

that ANOVA does not necessarily underestimate the critical treatment effect. In fact, the 398 

estimate of critical treatment with ANOVA most closely matched the critical value of the 399 

populations. Polynomials tended to overestimate the critical treatment level by 11% on 400 

average. With the logistic asymptotic function, it is difficult to decide when the maximum 401 

response is reached and this will limit its usefulness. Furthermore, the logistic regression 402 

procedure failed in many cases to fit the model, especially when the treatment effect was 403 

small. Moreover, the advantage of using ANOVA rather than the linear and nonlinear 404 

methods is that it does not presuppose the shape of the relationship between treatment and 405 

effect. Therefore, we suggest that a mixed model ANOVA is the most appropriate statistical 406 

method to analyse data from growth studies.  407 

4.1. Conclusions 408 

The results of this study suggest that the variance in aquaculture growth studies on different 409 

species is similar and, therefore, a similar experimental design (replication level and number 410 

of fish in each unit) can be employed in growth studies regardless of the species of fish. The 411 

results of the study suggest that most aquaculture growth studies cannot reliably (with 80% 412 
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power) detect a difference in weight that is less than 26%. However, researchers can take 413 

measures to reduce the minimum detectable difference by selecting fish within a narrow size 414 

range for experiments. This may reduce the MDD to 5% with adequate replication.  415 

The results of the present study suggest, that in contrast to the suggestions of Baker (1986), 416 

Cowey (1992) and Shearer (2000), a mixed model ANOVA is the best approach to analyse 417 

growth data with graded responses and superior to non-linear models.  418 
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Table 1. Variance and power in 24 independent growth studies on fish. 491 

Study Species Treatment 

levels
1
 

No. of 

tanks
2
 

N
3
 Average final 

body mass (g)
4
 

d (% of 

grand 

mean)
5
 

CVε
6
 CVβ

7
 Observe

d power
8
 

Minimum 

detectable 

difference at 

80% power
9
 

1 Halibut 5 3 47 122 24 0.32 0.00 99 11 

2 Turbot 3 3 36 330.3 30 0.28 0.09 44 36 

3 Tilapia 3 6 16 11.3 56 0.37 0.04 100 33 

4 Arctic charr 7 4 50 4.7 30 0.25 0.07 100 22 

5 Arctic charr 7 4 39 10.9 17 0.28 0.08 49 28 

6 Arctic charr 6 4 50 90 12 0.21 0.09 23 32 

7 Arctic charr 6 3 35 230.8 11 0.24 0.04 34 21 

8 Arctic charr 6 3 132 672.8 4 0.15 0.02 40 8 
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9 Arctic charr 6 3 64 1067.9 4 0.18 0.00 20 9 

10 Arctic charr 6 3 60 1437.5 10 0.17 0.00 98 15 

11 Arctic charr 6 3 96 886.7 17 0.39 0.06 55 27 

12 Arctic charr 16 3 30 2.3 37 0.26 0.06 100 33 

13 Arctic charr 6 3 90 1082.9 6 0.16 0.03 23 12 

14 Arctic charr 16 4 151 4.7 19 0.26 0.06 97 23 

15 Atlantic cod 5 3 13 800 18 0.36 0.00 41 31 

16 Atlantic cod 5 3 12 1497.3 13 0.33 0.00 60 6 

17 Atlantic cod 5 3 46 248.7 7 0.32 0.05 12 24 

18 Atlantic cod 6 3 15 791.8 20 0.35 0.00 46 32 

19 Atlantic cod 6 3 32 105.2 37 0.32 0.12 37 55 

20 Atlantic cod 3 6 56 1.9 16 0.36 0.07 38 17 

21 Atlantic cod 2 9 105 1.8 17 0.39 0.10 92 14 
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22 Atlantic cod 2 5 31 0.23 13 0.48 0.11 29 28 

23 Atlantic cod 2 5 35 0.52 8 0.36 0.00 44 12 

24 Atlantic cod 2 5 14 0.08 13 0.56 0.00 13 31 

1
Number of treatments tested in the experiment.  492 

2
Number of tanks tested for each treatment.  493 

3
Number of fish in each tank.  494 

4
Mean body-mass of fish (g) in a study. 

 
495 

5
Maximum difference between treatments means ((% of grand mean).  496 

6
Error coefficient of variation (CVε).  497 

7
Coefficient of variation for tanks within treatment (CVβ).  498 

8
Retrospective power (%) at the end of studies.  499 

9
Effect size (% of grand mean) at 80% power. 500 

Data from: 1-Thorarensen et al. (2010); 2-Le Deuff et al.(2010); 3-Ssebisubi, (2008);.4–14-Sigurgeirsson et al., unpublished ; 15-Sigurgeirsson 501 

and Árnason, unpublished; 16-21-Árnason et al., unpublished; 22–24-Edelsparre and Pálsson, unpublished. 502 

 503 

 504 

  505 

506 
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 507 

Table 2. Summary of analyses from simulation studies on data sampled from artificial populations, two with graded responses (Res11% and 508 

Res45%) and one population with no response to treatment (Res0%). Randomized normally distributed data with equal variances was generated 509 

based on the population responses assuming that CVε was 30.6 and CVβ was 4.5. The treatment level required to give a maximum response was 510 

100% for all artificial populations and the maximum response was 100%. 511 

 ANOVA Second order polynomial 

Three parameter logistic 

regression 

 Res45% Res11% Res0% Res45% Resp11% Resp0% Resp45% Resp11% Resp0% 

Mean critical treatment 

(±95% range)
1
 

99.7  

(96-104) 

95.0 

(90-103) 

92.3 

(90-101) 

110.7  

(107-113) 

108.8 

(102-113) 

96.5  

(85-108) 

101.5 

(97-107) 

97.0 

(88-128) 

- 

Median critical treatment (%) 100 95 92 111 108 98 101 92 - 

Mean maximum response 

(95% range)
2
 

100  

(95-105) 

101 

(97-106) 

100 

(94-105) 

103 

(99-106) 

102 

(99-106) 

105 

(101-109) 

96.8 

(93-101) 

97 

(93-112) 

- 
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Mean effect size as % of 

grand mean (95% range) 

18.3 

(10.2-26.9) 

13.1  

(8.8-17.5) 

9.0 

(5.8-12.0) 

- - - - - - 

Mean square residual 

deviation
3
 

8.4 12.0 23.4 9.6 10.2 16.5 8.9 3.8 - 

Proportion of analyses 

showing a significant effect 

of treatment 

100% 36% 1% 100% 51% 5% - - - 

Analysis producing an error 

message 

- - - - - - 0.1% 20% 67% 

1
The treatment effect required to give maximum response 512 

2
Estimated maximum effect. 513 

3
The mean square residual deviation between predicted responses and population responses. 514 
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Table 3. A summary of variability of final body mass and experimental design in 29 growth 515 

studies of 24 species of fish published in 2013 and 2014 in Aquaculture. The CVβ were 516 

estimated based on reported standard errors and levels of replication in studies where simple 517 

ANOVA was used for statistical analysis. 518 

 

Mean Range Mean 

factorial 

increase
2
 

CVε (%)
1
 27.9 23-36 1.78 

CVβ (%) 4.9 0-49 1.75 

Level of replication (rearing units / treatment) 3 2-6  

Number of fish in each rearing unit 25.7 4-100  

1
Information on CVε was only available in 4 studies. 519 

2
Final divided by the initial CVε and CVβ. 520 

521 
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Figure captions 522 

Figure 1. The three populations used in the model simulations: Res45% where the minimum 523 

treatment gave a response that was 45% less than the maximum; Res11% where the minimum 524 

treatment gave a response that was 11% less than the maximum; and Res0% where treatment 525 

had no effect on response. The units for treatment and response are shown as percentages. For 526 

Res11% and Res45%, a treatment level of 100% will produce a 100% response. 527 

Figure 2: Development of CVε with increasing body mass in experiments on (a) tilapia, 528 

Atlantic halibut and turbot, (b) Atlantic cod and (c) Arctic charr.  (The different lines 529 

represent separate studies). The increase in body mass is shown as factorial increase (mean 530 

body-mass / mean initial body-mass). 531 

Figure 3: Development of CVβ with increasing body mass in experiments on (a) tilapia, 532 

Atlantic halibut, and turbot, (b) Atlantic cod and (c) Arctic charr. (The different lines 533 

represent separate studies). The increase in body mass is shown as factorial increase (mean 534 

body-mass / mean initial body-mass). 535 

Figure 4: Coefficients of variation in growth studies of Atlantic cod and Arctic charr at 536 

different final mean body mass. a) CVε and mean final body-mass. The intercepts for the two 537 

species were significantly different (p<0.0001) while the slopes of the regression lines for the 538 

two species were not significantly different. The regression lines (interrupted for the Atlantic 539 

cod, continuous for Arctic charr) with a common slope was CVβ = Intercept - 0.006 × body 540 

mass with the intercepts being 25.7 and 40.6 for the Arctic charr and Atlantic cod 541 

respectively. b) CVβ and mean final body-mass. Neither slopes nor intercepts were 542 

significantly different. The common regression line was: CVβ = 6.67 - 0.005 × body-mass (R
2
: 543 

0.38).  544 

Figure 5: Minimum detectable difference (MDD), shown as % of the grand mean in growth 545 

studies with five treatments levels when statistical power is 80%.  a) Mean CVε and mean 546 

CVβ. b) High CVε and high CVβ.  c) Low CVε and low CVβ. 547 

 548 

549 
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Figure 1. 550 
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Figure 2.  553 
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Figure 3. 556 
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Figure 4. 559 
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Figure 5. 561 
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